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ABSTRACT
[ 22 Z<

Mass-loading and mass-coupling effects on dynamic
characteristics of localized rocket vehicle structures
were studied analytically and experimentally. Beams
and plates loaded with various masses and bracketry
were investigated. Solutions were obtained on free-
vibration characteristics, transmissibility, and
forced response. A specially built electromagnetic
induction shaker, in addition to conventional vibration

" and acoustic test equipment, was employed to produce
excitations including edge motions, concentrated force,
and distributed force in the form of sinusoidal and
random input. The analytical solutions agree closely

with experimental results, ”
Aeflor
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INTRODUCTION

In spite of the recent rapid advances in many branches of the aerospace
sciences, including dynamics, insufficient progress has been made in the
practical applications of vibration technology. There are still many difficul-
ties encountered in the areas of vibration design, environmental prediction,
dynamic analysis, test and evaluation. Dynamic problems associated with a
structure become more difficult and simultaneously more important when the
local structure has a piece of equipment mounted on it. In such a case, the
dynamicist is faced with the problem of estimating the effect of the equipment
on the response of the local structure in order to predict, realistically, the
vibratory environment experienced by the mounted component and to calculate
the vibration response of the combined system.

In 1961, Mahaffey and Smith (Reference 1) studied the local vibration
data of airplane flights, and in 1963 Franken (Reference 2) did an identical
study of the Titan missile. The results of these studies have been widely
used for the prediction of dynamic environments for mass-loaded and unloaded
local structures of missiles and space vehicles throughout the aerospace
industry. However, these two studies were primarily concerned with the
statistical regression of the airplane or missile flight vibration data at a
given vehicle zone; analyses of mass-loading effects due to the mounted
equipment were lacking. '

The first documentation of mass-loading effects on vibration environ-
ment appears to be Military Specification MIL-E-5272, but the mass-loading
provision presented appears to have been determined rather arbitrarily.
These mass-loading effects criteria were endorsed and specified in the new
specification standards, MIL-STD-810, by a working committee (Reference 3)
of shock and vibration specialists consisting of government and industry
expert dynamicists selected by the USAF in late 1962, No information could
be found in the new specification regarding the author, the date of initiation,
or the technical basis used in establishing the arbitrary mass-loading
criteria. During 1963-1964, Schock, Barrett, Jewel, and Lifer (Refer-
ences 4 through 8) of NASA/MSFC were interested in the mass-loading
phenomenon and they introduced an empirical prediction technique employing
a statistical approach in conjunction with Saturn firing test data; they also
recommended theoretical and experimental research studies to investigate the
dynamic response phenomenon.

Analytically, scientists and engineers have difficulty in computing the
vibration response of a structure without an assumption of the dynamic

-1 -
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transmissibilities, quality factor, complex elasticity, or damping factor.
This analytical problem is magnified when the structure is loaded with equip-
ment masses. It is believed that this problem has not been solved and it was
therefore one of the major technical objectives of this research program to
explore the relation between the transmissibility characteristics of the mass-
loaded and unloaded structures under both constant acceleration and constant
force excitations.

At NAA, mass-loading effects on vibrating structures were observed
by Lee in 1956 at the Engineering Development Laboratory of the Missiles
Development Division. He found these phenomena repeatedly in his work in
connection with 12 missiles and space systems at Douglas Aircraft Company.
His initial analytical investigation of the vibration characteristics of mass-
loaded structures was completed in 1959, and it emphasizes the frequency
and modal isolation studies. Based on these approaches, the mass-attenuation
analyses can be accomplished. This earlier work was documented as a

research report (References 9 and 10) for the Mechanical Engineering
Department of the University of Southern California.

In 1962, a preliminary experimental and theoretical investigation of
the mass-loading and coupling problem was launched at NAA/S&ID (References 11,
12, 13, and 14. A consistent trend of the mass-loading effect on transmissi-
bility characteristics then became apparent, and Lee formulated the relations
in conjunction with his graduate research work. These formulations are
verified further now by the planned experiments. The basic concepts of
employing mass-coupling systems to investigate the characteristics of
absorbtion of the vibration energy and to verify the validity and limitations of
the mass-loading phenomenon were also initiated. These basic concepts
are followed with further development through the present project. After
Lee's initial contact with NASA/MSFC in 1963, and following a technical
presentation, this study program was awarded in 1965 to correlate all of the
aforementioned efforts and to develop a technique for predicting the mass-
loading effect. The scope of work is illustrated in Figure 1.

SID 66-1201
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TECHNICAL APPROACH

Most of the local structures of rocket vehicles are beams, plates, or a
combination of beams and plates. Since the study of mass-loading effects is
in its exploratory phase, it has been necessary to consider only simple
structures, and, therefore, analytical as well as experimental studies con-
ducted under this contract accordingly place emphasis on mass-loaded beams
and plates. However, the basic principles can be applied to other structures
and with different boundary conditions.

The problem considered in this study involves a local structure that
carries some equipment represented by rigid masses. In mass-loading
studies, only the problems associated with equipment mass rigidly mounted
or attached through a rigid bracketry to a local structure under an arbitrary
vibration environment are considered. If the bracketry is sufficiently
flexible or the equipment has some critical frequencies that interact with the
local structures, the problem is treated under the mass-coupling cases.

For the mass-loading cases, the free-vibration and forced-vibration
problems are solved with a direct solution and with several alternative
approaches. The vibration transmissibility problems for the mass-loaded
structures, however, are solved in terms of the unloaded structures. The
mass-coupling problems are treated as an investigation of the interaction
phenomena among the equipment mass, bracketry, and the local structure.
This study is mainly for the purpose of inspecting the limitation of the appli-
cations of the mass-loading effects.

As shown in the block diagram (Figure 2), the mass-loading effects
problem can be divided into four study areas to obtain solutions fulfilling
the technical objectives:

1. Study the free-vibration characteristics including natural frequen-
cies and modal response of the unloaded and mass-loaded struc-
tures of rocket vehicles.

2. Investigate the changes of vibratory transmissibility and the
attenuation and isolation characteristics caused by the mounting
of equipment masses.

3. Analyze the forced response of the mass-loaded systems under
periodic and random excitations in the form of edge motion,
uniformly distributed force,and concentrated force.

-5 -
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VIBRATION
PROBLEMS OF | _ | FREQUENCY MODE ACCELERATION
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Figure 2, Technical Approach

4. Survey the coupling phenomena among bracketry, local structures,
and equipment mass.

The problem of analytical prediction of mass-loading effects can be
studied by several methods, including series-expansion, matrix-iteration,
finite-difference, and some new development in the transfer-characteristic
studies. Academic studies and new developments, as well as general appli- ’
cations, are equally emphasized in the investigation of mass-loaded beams,
while more practical applications are developed in the investigation of mass-
loaded plates. Mass-loaded beams, treated as continuous systems, are
solved by the series-expansion approach; when treated as lumped-mass
systems, solutions are obtained by the matrix-iteration technique. Other
approaches are also discussed. Among the many analytical methods used
for mass-loaded plates, a combination of the finite-difference and matrix-
iteration approach is outstanding because of its efficiency and practical
effectiveness in solving this type of problem.

An experimental test program that used 58 models to represent the
unloaded and mass-loaded local structures was conducted as an extension of
Lee's earlier work to confirm results of the theoretical studies and to
explore the unknown transmissibility characteristics.

Both the analytical and experimental investigations consider free vibra-
tion and forced vibration. Sources of excitation include acoustic, mechanical,
and electromagnetic induction. These excitations are in a form of edge-
motion, concentrated force, uniformly distributed force, sinusoids, random
oscillation, constant-force inputs, or constant-acceleration inputs.

Experimentally, mechanical shakers were used to produce the edge
excitation. An electromagnetic induction shaker was specially built to ‘

-6 -
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generate concentrated exciting forces that could be applied at any location of
the specimen. Uniformly distributed forces were accomplished th>rough
acoustic tests. Constant-force inputs represent a different dynamic environ-
ment from the constant-acceleration cases; furthermore, the net levels of the
exciting force do not identically correspond from one to the other,
Mechanical shakers can easily produce the constant-acceleration excitation,
but it is difficult to generate the controllable constant-force excitations.
Hence, for the constant-force cases, electroinduction or acoustical forces
were used. One of the most difficult experimental tasks is to test the
specimens without the attachment of a shaker, instrumentation, or any other
mass, however, this task can be accomplished ingenuously by the use of the
electromagnetic induction shaker with proximity gages.

SID 66-12.01
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ANALYTICAL STUDIES

Several methods can be used in the analytical study of mass-loading
problems:

Lumped-Masses and Stiffness-Matrix Method
Lumped-Masses and Flexibility-Matrix Method
Force-Matrix Method

Finite-Difference Method

Energy Method

Series-Expansion Technique

A good approximate solution for the first mode can be obtained by the
energy method using Rayleigh approach, but usually this method becomes less
effective for higher modes. Since the attenuation and isolation of higher
modes is one of the major objectives of this study, this method is not con-
sidered for either the beam or plate cases. Any one of the other methods
can be a convenient way in solving the mass-loaded beam problems and
three of them are discussed in detail.

By treating the mass-loaded beam as a continuous system, the problem
is solved through the use of the series-expansion technique which results in
a general solution from which numerical values can be obtained easily.
Where high-speed computers are available, mass-loaded beam problems are
solved by the lumped-mass approach combined with the matrix-iteration
process. Numerical solutions of the frequencies are obtained and the mode
shapes are plotted to compare with the experimental results. The finite-
difference method is briefly discussed for mass-loaded beam cases; however,
the same method is presented in detail for the mass-loaded plate cases.

For the mass-loaded plate problems, the lumped-mass method may
cause some computational difficulties in the determination of the stiffness or
flexibility matrices; the series-expansion technique, which treats the mass-
loaded plate as a continuous system, may introduce problems in computer
programming or may require laborious manipulation for a numerical solu-
tion, Therefore, the plate problems are solved by using the finite-difference
technique in conjunction with the Jacobian matrix-iteration method to obtain

-9 -
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numerical values. The problem is also solved theoretically by the
series-expansion technique.

MASS-LOADING EFFECTS ON FREE VIBRATION

To predict the forced vibration response of a structure, it is beneficial
first to find the free-vibration characteristics. Methods for solving free-
vibration problems of a simple, unloaded structure are available in the
published literature; however, for the mass-loading case the problem becomes
more complicated — only a few solutions for some special cases exist.

In the following discussion, the modal response in free vibration of a
mass-loaded beam or plate is analyzed in a general manner by two methods:
(1) series-expansion, and (2) finite-difference methods. The lumped param-
eters approach is also employed for the case of mass-loaded beam. These
methods do not offer equal advantages in obtaining solutions for the practical
engineering problems because of the degree of complexity involved in each
approach. It will be shown later that the lumped parameters method for the
beam case and the finite-difference method for the plate case are the most
practical approaches to the mass-loading problems. Computer programs have
been written for evaluation of the modal responses of the mass-loaded beam
and plate based on each of these two methods.

Mass-Loaded Beams

Series-Expansion Method

Equation of Motion. The equation of motion for a uniform beam carry-
ing a system of concentrated masses M; at locations x = a; (Figure 3) can be
written as: (References 10 and 15)

4 N 3 N 2
EI% 'Ta%;‘ z T 6(x-ay) 5 YZ i z M, 5(x -ai)a—z—’i =0 (1)
ox A dx0ot k at
i=1 i=l

3 3

N R

R ' 3

o ' N X
N'—a‘——l §
L

Figure 3. Analytical Model of Mass-Loaded Beam
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where

EI

flexural rigidity of the beam
y = y(x, t) = beam deflection
. . .th
J. = rotary inertia of the i concentrated mass
P = mass of the beam per unit length

6 = Dirac delta function with the property:

L
6(x-ai) f(x)dx = f(ai) for x = a,; and
° 6(x -a)) =0 for x # a,
: i i
N = total number of masses on the beam

Solution. Assume the deflection in a series form:

0
yix, t) = z Yn(x) (An 51nwnt+ Bn coswnt) (2)
n=1
where
th
Yn(x) = the n normal mode of the beam
th .
w = the n™ " circular natural frequency
An’ Bn = constants, determined from initial conditions

Substituting Equation (2) into Equation (1),

[ N [ N 1]
EIYY +02{d > a60x-a)y |- Pty M.5(X-a.)YJ =0 (3)
n |dx i i" " n i i" " n
i i=1

n
izl

where the primes denote derivatives with respect to x.

- 11 - .
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The general solution of Equation (3) is

* 1
Yn(O) Yn(O)
Yn(x) = > (cosh knx + cos knx) + an (sinh knx + sin knx)
L LU
Y (0) Y (0)
+ nz (cosh k x - cos knx) + (sinh knx - sin knx)
2k n 2k
n n
(4)
2 N
w \
-— z JiYn (ai) [cosh kn(x - ai) - cos kn(x - ai)]u(x-ai)
2kEIL .
n i=1
2 N
“n
+ 3 z MiYn(ai) [smh kn(x - ai) - 8in kn(x - ai) ] u(x-ai)
2k'EI .
n i=1
where
4 P2 . .
kn = EI% ' 4 ° unit step function

Boundary Conditions. The boundary conditions for a beam are as
follows:

Simply supported end: Yn =0 Yn = 0
Fixed end: Y =0 Y =0
n n
n m
Free end: Y =0 Y =0
n n

Imposing the proper boundary conditions at each end of the beam on

Equation (4), a set of equations can be obtained, from which the frequency
equation will be derived.

Frequency Equation and Natural Modes of a Simply Supported Beam.

The first case to be studied is a mass-loaded beam with simply supported
ends. The boundary conditions are

]

Y (0) = Y (0) = Y (L) Y (L) =0 (5)

-12 -
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. Imposing these conditions on Equation (4), two sets of equations are
obtained:
Y (0) Y"'(0)
: —+—— (sinh kL+s1nk L)+ (sinh k_L - sin k L)
2k 3 n n
n 2k
n
2 N
“n '
- o z J.Y (a) [cosh‘ k(L -a) - cosk (L - ai)] u(L -a,)  (6)
n i=1l
2 N
13‘ zMY(a)[smhk(L-a)-smk(L-a)]u(L-a)
anEI i=1
and
. ' m
knY (0) Y (0)
> (sinh knL - sin knL) + - (sinh knL + sin knL)
2 N
“n ' :
- > z I.Y (3)) [cosh k (L -a)+cos k (L - ai)] wL-a)  (7)
i=1
2 N
+2n MY(a)[s1nhk(L-a)+s1nk(L-a)]u(L-a)=0
n
i=l

-13 -
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Substituting x = 2. in Equation (4) and its derivative, Y, (x), and

by letting € — 0, two sets of equations for the conditions of consistency are
obtained.

]
Y (0)
- Yn(aq) + an (sinh knaq + sin knaq)
"
Y _(0)
+ 3 (sinh kna - sin kna )
2k q q
n
2 g-1 (8)
“n '
- — z JiYn (ai) [cosh kn(aq - ai) - cos kn(aq - ai)] u (aq- ai)
2k EI |
n i=1
2 q-1
;’ EMY(a)[mnhk(a -a)-smk(a -a)]
Zk EI =
n i=1
.u(aq-ai)=0 q=1 2,3, ..., N
and
Y' (0) Y;:(O)
-Y (2 )+ (coshk a + cosk a )+ (cosh k a -cosk a))
n' q 2 nq n q 2'kZ n q n q
n
2oal
- @ JiYn(ai) sinh kn(aq - ai) + sin kn(aq - ai)] . u(aq- ai)
i=1
(9
o2
+ z M.Y (a.) |cosh k (a_-a.,) - cos k_(a —a.]
ZkZEI ’ i n( 1) n( q a'1) n( q 1)
n i=1
u(aq—a)=0 q=1,2,3, ..., N

- 14 -
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Equations (6) through (92 form a system of (2N + 2) equations with

(2N + 2) unknowns, Y (0), Y (0), Y (a,), and Y'(a.). For nontrivial solu-
n n n 1 n 1

tions of the problem the determinant of the coefficients of the above unknowns
must vanish, thus, resulting in the frequency equation:

det (k. ) = 0 (10)

From this equati'on, the natural frequencies' w can be found. For each w
the unknowns, Yn(O) , Y:;(O) ) Y‘n(ai) and Yn (ai) are first calculated then

the corresponding mode shapes Y,(x) can be determined from Equation (4).

If the rotary inertias of the masses are neglected, Equation (9) may
be discard'ed and then there exists only (N + 2) equations with (N + 2) unknowns,
"

Y;(O) , Y (0) and Y (a,).

Beam with Only One Mass. For a simply supported beam with only one
concentrated mass (N = 1), Equation (10) becomes

‘—IM—k‘L (sink_acosh. .k _a- sinh k acos k a).
p2 n n n n n

. [sin kn(L - a) cosh. kn(L - a) - sinh. kn(L-‘a) cos kn(L - a)]

2M

+ o k [sin k L sinh k_asinh k (L - a)
n n n n

(11)
- sinh k L sink _a sink (L -a)]
n n n

+%£-k3[cosk(L-a) sinh k L cos k_a - cosh k (L - a)
n n n n n
« sin k L cosh k a]+4sinh.k Lsink L = 0

n n n n

If the mass is placed at midspan (a = L/2), Equation (11) can be
factored into two equations: one for the symmetrical modes and the other for
antisymmetric modes. If, in addition, the rotary inertia is not considered,
the two frequency equations are

Mkn knL knL
) tan—z—‘-tanh,T‘ -4 =0 (12)
n =1, 3,5, ..., for symmetrical modes
- 15 -
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and

k_L
>—= 0 (13)

sin

n =2, 4,6, ..., for antisymmetric modes

From Equations (12) and (13), the natural frequencies can be solved.
The natural modes then are found from Equation (4).

Mass-Loading Effects on Natural Frequencies. To study the mass-
loading effect on the natural frequencies of the beam, Equation (12) is
rewritten as follows:

knL knL 4p
tan > - tanh > = Ml
n
Let
knL
6= 2
Mb = PL = total mass of the beam
Then,
Mb
6(tang - tanh ¢) = 2——M (14)

It is seen from Equation (14) that the natural frequencies vary with the
mass ratio, Mb/M. For each Mb/M there is a set of frequencies.

Several approximate values of 6 (or k,1./2) for the first three symmetric
modes are as follows:

Value of ©
Mb/M Mode 1 Mode 2 Mode 3
Mb<< M T/4 1-1/4w 2-1/4mw
Mb z M 0. 38 1. 38n 2,387
M, >> M /2 1-1/2xw 2-1/2n

- 16 - _
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Since
wz =£k4,w =k2 ,/E-I—
n P n n n P
and (15)
_ 20 _ 2 .
kn =T 1 (G + b)r
where

j:n-1:0,1,2,...

long
!

constant, determined by Mb/M

o
N

1/4 for Mb/M.<< 1

n

0. 38 for Mb/M =1

i

1/2 for Mb/M > 1

The frequency w can be expressed in the form

2
w = 4G+p’ [EL (16)
n 2 p
L
Mode Shape Investigation. The symmetric modes generated from
Equation (4) can also be expressed in the following form for the simply
supported beam with central mass (Figure 4):
knL sinh knx sin knx
Yn(x) = C cos > x L - L (17)
h o cos 2
cos 2 2

where C is a constant. In particular, the normalized mode shape (C = 1) at
the mas, x = L/2, is

knL knL k L
2 (ta.nh — - tan )

Ly _ n
Yn(—> - cos 2 2

or (18)
Y <——> = cosf (tanh 6 - tan@)
n

-17 -
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a a a a

FUNDAMENTAL

FIRST HARMONIC

SECOND HARMONIC

THIRD HARMONIC

(SYMMETRICAL MODES ONLY)

UNSYMMETRICAL MODES AUTOMATICALLY EQUAL
TO ZERO AT MASS LOCATION

Figure 4. Mass-Loaded Beam Mode Shapes
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From Equations (14) and (18), the mode shape at midspan of the beam
can be expressed in terms of mass ratio Mb/M :

M M
270 2 b)_ 4 ( b)
7a(z) - °°se'é‘(‘ﬁ' = cosd L\ (19
n

Substituting Equation (15) into Equation (19),

M
Ta %) T +2b)1'r (Mb) [cos G+ b)wl

or
M
L 1 1 ( b)
=\ = 20
Yn‘<2) cn—l+b M (20)
where
! 2
c == lcos brrl
Icos b1r| = absolute value of cos bw
and

By examining Equation (20) it is seen that the normal mode at x = L/2
is proportional directly to mass ratio, Mp/M, and indirectly to mode
number, n. For the same mode the larger the mass, M (smaller in My /M),
the smaller the modal deflection, Yn(L/Z). For the same mass ratio the
higher mode has smaller mode amplitude.

The most interesting and important result of the analysis is that, if
the beam is loaded by a heavy mass, (M >> M,), the higher modes at the load
become insignificant. For example, if M = 10My, or Mp/M = 0.1, Equa-
tion (20) gives

) R I T
Y (z) = C TT-137025 (01) = 3z C for mode I

L | 1 1 ,
Y3 (2) = C 3-1+0.25 (0'1) 22.5 C for mode 3

L. ] 1 1 .
Y5 (2) = C 5_1+0.25(0-1) = .5 C for mode 5

- 19 -
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The modal deflections at the mass for modes 1, 3, and 5 are of the
ratios 1 : 0,111 : 0,0588,

Thus, it can be concluded that if the beam is loaded with a very heavy
mass at the center, My, << M, the higher modes become very small in com-
parison with the first one and have no significant effects on the vibration
response. The mass-loaded beam can then be treated as a one-degree-of-
freedom system wherein the problem is much simplified. Similar analysis
can be applied to a mass-loaded beam with both ends fixed.

Beam with Fixed Ends. A mass-loaded beam with fixed ends can be
analyzed in similar manner using the following boundary conditions:

Yn(O) = Yn(O) = Yn(L) = Yn(L) =0 (21)

From Equations (4) and (21), two sets of equations are obtained:

Y (0) Y:(O) .
>~ (cosh k L - cos k_L) +—"—o (sinhk L - sin knL>
2k n n 2k n
n n
2 N
“n § : 1
- J.Y (a.) [cosh k (L - a))
ZkZEI ( i'n i n i
n 1=1
- cos kn (L - ai)] u(L - ai) . (22)
i N
+——§M.Ya. inh k (L -a,) - si - -a)=0
2k3E1 ' i n( 1) [sm. n( al) sin kn(L ai)] u(L ai)
n 1=
Yo £(0)
(sinh k L + sin k L) + (¢oshk L - cos k L)
2k n n 2 n n
n 2k
A n
- 20 -
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2 N
w
n

T 2k _EI Z I ¥n(®) lsmh k(L-a)+sink (L - ai)] WL -a) (23)

2

i=1
+ ZMY(a)coshk(L a)-cosk(L-a)]u(L-a)=0
ZkEI -

The condltlons of compatibility give the following two sets of equations

for Yn(aq) and Yn(aq)
n m
Y'(0) Y_(0)
-Y (a )+ (cosh k. a -cosk a )+ (sinhk a - sink a )
n q 2 n q nq 3 n q n q
2k | 2k
n n
2 q-1
wn
- E JY(a)[coshk(a - a) - cosk_(a -a)]u(a -a.) (24)
2 i i
2k EI%
n =1 .
2 gq-1 ' ¢
> E MiYn(ai) lsmh kn(a.q - ai) - sin kn(aq - ai)] u(aq- ai) =
2k EI7
n i=l
, Y (0) Y"(0)
- Yn(aq) + Zk (sinh knaq + sin knaq) + Zkz (cosh kn,aq - cos knaq)
n
2 qg-1
w
a l - \ a {a o ] "l - \ 28
"ok EI :; M Y (a ) [smh k aq a + sin k '3 ai)] “\aq a.) (25)
i=1

- 21 -
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2 q-l

., - .
n
+ > MiYn(ai) [cosh kn(aq - ai)‘ - cos kn(a.q - ai)] u.(a.q - ai) =0
2k EI¢
n i=l
q=1,2,3 ..., N

Equating to zero the determinant of the coefficients of the unknowns, Y;(O),

Yl'.'l'(O), Yn(a;) and Y'(ai), the frequency equation is obtained:

det (kn) = 0

The mode shapes are then determined from Equation (4). For the case
with only one central mass, the problem is much simpler. The mass-loading
effect can be analyzed by similar techniques as in the case of simply supported
beams. However, the detailed analysis of this case is not presented here
since another method, the lumped-mass/matrix iteration approach, which is
discussed next, provides the same accuracy for solution of the problem but
requires less effort in analysis and computation.

Lumped Mass Approach

It can be seen from the preceding discussion that to find a closed-form
solution for the free-vibration problem of a mass-loaded beam is a lengthy
process, especially if more than one concentrated mass is involved, or if
the effects of rotary inertia and shear deformation are considered. Prac-
tically, it is more convenient to solve the problem by an approximate method
such as the one which will be discussed in this section herein.

The lumped-mass method was derived originally by Myklested and Prohl
(Reference 16) and it has been modified since to include the effects of rotary
inertia and shear. The mass-loading beam is represented by a number of
lumped masses connected by massless linear springs with constant bending
stiffness EI and shear stiffness KAG. The notations are listed as follows:

A = cross-sectional area of beam
E = Young's modulus
G = shear modulus
I = area moment of inertia about Z-axis
IZ = mass moment of inertia about Z-axis through center of gravity

of mass

- 22 -
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K = shear factor = 5/6 for rectangular cross-section

L = length of beam

m = lumped-mass
M = bending moment
V = shear force
y = deflection of beam
@ = slope of beam

a%rat(...)

(»00)

The subscripts are as follows

b, s = quantity due to bending and shear, respectively
i = station or section number of beam
t = total quantity

The coordinates and sign conventions for moment and shear are indi-
cated in Figure 5.

For simple harmonic motion the inertia loads at station i are

. 2
—mly - miyl
2
- 6 =wW"§@8
Iz1 bIz1

- 23 -
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<

-«
|
=P
b
[ m—
{ m—

i+1

(8)

Figure 5. Coordinates and Sign Conventions of the Beam

The influence coefficients for the ith section of the beam due to unit load
(Figure 6) are as follows.

~N
~

]

a -

Figure 6. Unit Load on a Beam
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Due to unit force,

L2 L3 L,

— 1 -1 1 _ 1

6 =, y = ' 8 = TRAGE * Vs °
b Z(EI)i b 3(EI)i s (KAG)i s (KAG)J',

Due to unit moment,

L, L
0 = : ’ = L
b~ (ED, Yy 2(E1),

Figure 7 shows diagrams of the shear, moment, slope, and deflection
for a vibrating cantilever beam. Various discontinuities can be observed in
some of the curves.

- x rb ithe) > th
i SHEAR DISCONTINUITY AT EACH STATION
l v " DUE TO LUMPED VIBRATING MASS
E i

x
|—>

MOMENT DISCONTINUITY DUE TO ROTARY
l M /———-’_’ INERTIA OF LUMPED MASS AT EACH STATION
BENDING SLOPE IS CONTINUOUS
l o ,\
SHEAR SLOPE IS DISCONTINUOUS SINCE
l o ___‘_____]_a SHEAR 15 DISCONTINUOUS

T\ TOTAL SLOPE IS DISCONTINUOUS SINCE
l 0¢ Sso - SHEAR SLOPE IS DISCONTINUOUS

—1-—— . DEFLECTION IS CONTINUOUS
y

-y
-

@ o
“w

Figure 7. Forces and Deformations of a Cantilever Beam
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Starting from station i, the shear and moment at station i + 1 on the
left side of i can be calculated:

2
= + w
Vielr = Vi Ty, (26)
It is noted that V; is the shear at i but it does not include the effect of the
mass at i,

2
= M. +V.L +
My = M+t Vb +mery L,

If rotary inertia is considered,

M = M, +V.L, + m.wzy.L. + 1 .wZB
i ii i ii zi

i+l (27)

bi

It is noted that Mi is the moment at i but it does not include the moment from
the ith mass and rotary inertia.

The slope due to bending can be calculated by the following equations:

L2 L.

2 i 2
0; 1 ) ( )
bi - %b,i41 T 2(ED), <Vi Tmuwy) (ET), M+ w8y

v.i: ML S L
=0 bt 4 ] Lo +m Sy = (28)
b,itl "2(ED, ' (ED, = =i (ED), Cpi T @Yy 2(ED),
6, .., =6_.J1-1 — i - i
b,i+1 bi 2" (ED,| T 2(ED, (ED), i 2(EDi

The total slope is the sum of the slope due to bending, and that due to
shear

2 1
- . S 2
Ot iv1 = O, i1 +(V1 tm,e Vi) (KAG), (29)

- 26 -
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The deflection at i is calculated as
L 3

2, \ 1
Yi = Yi+1 +9t’ itl Li + (V + m, };) 3(EI) + Mi + Iziw ebi Z(El)i

Lf ' L, ] ) Li3 L,
Vi T Vi T O T Yy 3(ED, * (KAG)iJ omey 3(E1)i+ (KAG).

S
w
T M, 2(ED), FLE O 2(E),

Replacing b i+l in Equation (29) by other quantities at i and solving
for yit1 ’
(2 ] [ %
i i i 2 i
y =V + M, |55=]|t+t86 I 95 — - Li (30)

i+l ilé(EI)i-(KAG)iJ i|2(EI), bi|zi  2(ED),

m,sz?’ m,wZL,

+ 1 + 1 1 _ 1 1
Yy 6(ET), (KAG),

Equations (26) through (30) related the quantities at i+l to those at i,
and they can be expressed in matrix form as

ol -/n 19,

itl
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CH
Ll

column matrix of (V. M

1417 Misr B, 1400 B¢ e Yigd)

=
n"

column matrix of (Vi’ Mi’ ebi’ 64y Yi)

—/
o

LJ
1

square matrix as follows:

i | | |
2
1 L 0 | o | m
S _._'-___.__l___._.______‘_.__l _____________
|
: 1 i I w? t 0 | m‘*’ZL
Ly zi | i i
U S N SR B
2 I | ' | 2
L | oL L | L
i i 2 i | 2 i
| - l1-1 W e O m®"-
2(EI) | EL | zi  (EI); | | i 2(EI)
______ S D N
|
| | | 2 2
L‘.2 | L L. l m W L
1 i | _ i l 11 wZ i | 0 i mwz i
(KAG).” 2(ED), | ~ (EI) zi® (EI), | l (KAG),” i 2(ED)
N N E \
| | I 1
L3 L L2 1.2 | | L2 L:
i i | i | I wl__1 L I 0 Hmwz i 1
6(ED), " (KAG), | 2(ED) | = 2(EI), " i | E 6(ED), ~ (KAG),
' I

At one end of the beam, station 1, the quantities of [U] 1 either are
known from boundary conditions or can be normalized to other quantities.
The quantities at station 2 then can be calculated as:

|U|z = [D]l |U|1 (32)
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Similarly,
|U|3 = [D]2 |U|2 = |:D]2 [D]1 IUI ) (33)

[9]4= 2] [0} =[0]_[2] [°] o], 54
3 3 2 1
At the other end of the beam, station n,

IUln = [D]t ,U! ! (35)

where

[D]t = [D]n'_1 ... [0] 1 [D]i [D]Z [D] (36)

1t

[D] is called the transfer matrix with elements dpg, where p, q = 1,2,3,4,5.
t

The elements dpyg are equal to zero; i.e.,

dig=dpy 7 d37dy 79540

Frequencies and Mode Shapes. To solve Equation (32) for the forces
and deformations, [U] no at station n, the natural frequency, w, involved

in the transfer matrix, [D]t , must be found first according to the following
procedures:

1. Substitute the boundary conditions of the beam in Equation (35) to

obtain a set of equations in terms of the unvanishing quantities of
IU]1 and [U]n .

The frequencies are found by equating to zero the determinant
of the coefficients of the unknowns in the system of equations.

™

For the mass-loaded beam with fixed ends the boundary conditions at
stations and n are:

6,=8,=0
y=0
_29-
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Substituting in Equation (35),

A dp 4y, 43 9, 41 V]

My do1 9 Y23 Yy 5| | My
01 = |d3; 93 d33 d34 d35] | O (37)
0 dgr Y4z Y43 Y4y 5| | O

| O] %1 92 953 9ss 55| | O

The last two equations of (37) can be written in the form

dg VvV +dM

I
o

n
o

d_.V +dZM1

511 5

For nontrivial solutions of V; and M}, the determinant of the
coefficient must vanish., This gives the frequency equation

dgy dgp | 70
dg; dgp | =0

or (38)
d .d d d 0

41952 7 %42%51

Once the natural frequencies are found from Equation (38) the matrix
[D]i of Equation (31) is known. The mode shapes, Yy;, at any station then
can be calculated step by step using Equations (32) through (35).

A computer program has been available at NAA for performing the
preceding calculations of frequencies and mode shapes. The program was
originally developed for modal analysis of any beam-like structure with any
boundary conditions. In the present case of a mass-loaded beam with fixed
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ends, the computed natural frequencies and mode shapes were found to agree
closely with the experimental data.

Table 1 presents a comparison of the natural frequencies. The mode

shapes of first four modes plotted by the computer program are shown in
the appendix.

Finite-Difference Method

The free-vibration problem of a mass-loaded beam can be solved by the

finite-differ ence method. Starting with the equation of motion for an unloaded
beam,

ay 9y _
EI —+¢ > =0 (39)

The notations are the same as previously stated. For a mass-loaded beam,
p is a function of x, i.e.,

p = p(x) = mass/unit length

Assume the solution to be of the form

wt

y(x,t) = Y(x) e (40)

where Y(x) = natural mode. Substituting Equation (40) into Equation (39),

4
d_ii - E_pI w2y =o
dx
or
d4Y ~ _‘f_z_ PpY (41)
4 EI
In the finite-difference form,
4 2
AY w :
= =77 pY (42)
EI
Ax4
- 31 -
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Table 1. Mass-Loaded Beam Frequencies Comparison

Additional Weight Additional Weight Additional Weight
Case | Additional | Frequency at 4,25 (in.) at 7,25 (in.) at 12 (in.)
No. Weight No. Analytical Test Analytical Test Analytical | Test
1 0 1 66.26 66. 4 66.26 66. 4 66.26 66. 4
0 2 182. 6 182.1 182. 6 182.1 182. 6 182.1
0 3 357.7 357.9 357.7 357.9 357.7 357.9
0 4 590. 8 591.5 590.8 591. 5 590. 8 591.5
2 0.165 1 63.8 61.16 57.5 56.24 51.90 52. 57
0.165 2 156. 6 158. 8 152.9 158.3 176.9 178.0
0.165 3 305. 6 307. 6 - 333.0 334.4 326.0 325.3
0.165 4 515.5 543.0 545, 0 557.0 543.9 564.0
3 0.231 1 62.8 60. 10 54. 6 53.8 48,3 46.86
0.231 2 152.3 150.9 147.8 150.8 176.8 176.00
0.231 3 294.5 295.6 328.1 332.6 318.0 305.5
0.231 4 513.2 524.9 533.8 568.8 542. 6 556.0
4 0.330 1 61.3 59. 38 50. 99 50. 0 44,04 43,48
0.330 2 143, 4 145, 3 141.7 144, 7 173.2 174. 2
0.330 3 284.1 292.7 317.5 326.7 309.0 302.5
0,330 4 495. 1 520.8 510.0 535.3 515.0 547.0
5 0.495 1 58.7 57.0 46,1 45, 17 38.9 38.71
0. 495 2 132. 4 134.8 134.9 138. 10 165.7 168. 1
v0.495 3 272.3 283. 4 297.2 306. 7 298.0 296.2
0.495 4 460. 7 475.0 485.0 492.4 469.3 485.0
6 0. 660 1 56.3 54,5 42. 4 41. 66 35.2 35.33
0. 660 2 124.9 125.4 130.5 135, 6 159.5 157. 6
0. 660 3 264.1 269.8 281.1 271.8 290.0 291,0
0. 660 4 432. 6 406, 1 465.0 440, 7 440. 6 413.0
7 1. 320 1 47.9 46.5 33,1 33.38 26.8 26. 57
1.320 2 109. 6 110.7 117.8 121.8 129.7 135.8
1.320 3 228.9 236, 2 217.6 222.8. 276.0 273.8
1.320 4 338.9 385_.5 410.0 412.0 363.0 364.7
8 1.980 1 42.3 40.5 28.1 27.0 22.5 23.03
1.980 2 103.1 104, 6 109. 6 109.2 113.8 119. 5
1.980 3 203. 4 190. 8 193.3 182.8 269.0 270.2
1.980 4 313.2 293.7 390.0 400.0 340.0 350. 2
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The beam is equally divided into n portions with the mass lumped ateach
division points, which is designated as a station. There will be (nt1) such
stations, including two end-stations.

By the central-difference method, for station i,

4

AY = Yi-Z - 4Yi-1 + 6Yi - 4Yi+l + Yi+2 (43)
where
i=612, ...... (n+ 1)
Substituting Equation (43) into Equation (42),
2
Y, - 4Y,  +6Y. -4Y.  +Y,  =—— pax' Y, (44)
i-2 i-1 i i+l i+2 EI i
where
Ax = L/n = length of subspan
Letting
M, = pPAx = lumped mass at station i for a length, Ax,

1

Equation (44) is rewritten as

- - = — W
Yig =4 PO, - 4Y, L+ Y L ST MY (43)

In applying boundary conditions to Equation (45), for a simply supported
beam,

wlal = <fT) - 0 32}’(0)_ 82Y(L) A
(U)‘Y(L‘)—U’ 2 - 2 =90
ox ax

or

i
'
=

Y =Y =0, Y =-Y , and Y
o n -1 1 n

- 33 -
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and for a clamped beam,

_ _ aylo) _ ay(L) _
y(o) = y(L) =0, 5 - ox =0
or
Y0=Yn=0, Y_1=Yl, and Yn_1=Yn+1

For each station i, an equation such as Equation (45) is written. There

are (n-1) such equations with (n-1) unknown deflections. In matrix form the
system of equations is

[K] |Y| =A% M) |Y| (46)

where

[K] = square matrix of stiffness coefficients, obtained from the
coefficients of Y in Equation (45).

| Yl = column matrix of deflection Y

t M ;l = diagonal matrix of lumped masses

)\2 =w2 Ax3/EI

The mode shapes are found as
2 -1
|Y| =[] M) |Y| (47)
where
-1

[K] = inverse of [K]

The frequency equation is
> -1
fr]-af[ [m] =o (49

- 34 -
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where

E I J = unit matrix.

Using the Jacobian subroutine of the computer programs, the natural fre-
quencies and modes can be calculated. '

Mass-Loaded Plates

Finite-Difference/Matrix-Iteration Method

For investigation of the free vibration of the mass-loaded plates, the
finite-difference method, in connection with the matrix-iteration method, is
used. The.formulation of the problem from this method is simple and could

be conveniently evaluated by computer programs with considerable accurate
results.

Equation of Motion of Free Vibration

vigplw, PRy _ (49)
D
where
2 2\ 2
2 2 9 9
veve - (— 4 —
2 2
9x 9y
.. 9¢w
W = —
ot
W =w (x, y, t) = deflection
p = density of plate
h = thickness of plate
Eh3 s
D = ————— = flexual rigidity of plate

1
12(1 - v9)

This equation applies only to an unloaded isotropic plate with uniform
density and thickness. For a mass-loaded plate, replace ph by M(x,y)
which is the mass per unit area.

V2V2w+%1w =0 (50)
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Assume the solution to be of the form

w (x, Y, t) = W(x, y) sinwt (51)
where

natural mode

Wix,y)

€
T

circular natural frequency.

Substituting Equation (51) into (50), the equation of motion becomes

vivly _ %’Iwzw =0 (52)

or in the form of finite difference,

4 4 4 2
A\Z+2A;<YVZ+A‘Z_I‘%>W=0 (53)
Ax Ax™ Ay Ay

The plate of size a- b is equally divided into m.n rectangular
elements of size (Ax) x (Ay) as shown in Figure 8. In addition, one row of
elements is added along the edges of the plate to account for the boundary
conditions which will be discussed later. The intersections of the division
lines, numbered by i and j along x and y directions, respectively, are
stations where the mass of the plate and the loads will be lumped.

By the central-difference method the relative deflections can be
expressed as

AW =W m W P OW W 5 Vi,
adw - w 4w + 6W 4w + W
y©u T Ty, =2 i, j-1 i,j i, j+l i, j+2
(54)
2 w -

W =
xy o Vain e TV et Wik e Y Wik, gn

- A

2 [Wi, =t W P Wyt Wi+1,j] i, j
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' Figure 8. Plate Geometry

Substituting these quantities into Equation (54) and letting Ax = Ay,

Mij 2, 2
20 - D v Ax Wi,j-s Wi+l,j+Wi-1,j+Wi,j+l+Wi,j-l

+ + + + +
2 Warn, 541 "W, g 7 Vi1, j+1 Wi, j-l] Wiz, ; Wiz,

+ W =0

w
i, 42 7 i, -2

(53)

For each station, i, j, there is an equation such as (55). M;j; is the
' lumped-mass at station i,j for an area ijz; i.e.,

M.. = MAx2
ij
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In order to solve these equations, boundary conditions must be applied:

Simply Supported Boundary:

2
W(o ):0’ _a_—w(%y._)=o
24 dax
y at x =0
W . =0 w .= =W,
(0,9) ~ 7 =L Lj |

(Similar conditions existat y =0, x=a, and y=b.)

Clamped Boundary:

Wo,j=0’ w-l,jzwl,j at x=0

Wi,o=0, Wi,-1=wi,1 at y=0

(Similar conditions existat x = a and y =b.)

To illustrate the procedure, the plate in Figure 9 is assumed to be
clamped at all edges with 9 times 8 = 72 plate elements (m =9, n = 8).
For each station i,j, an expression of Equation (55) is written for all deflec-
tions at its own station and other adjacent stations. For these two kinds of
boundary conditions the deflections on the edges are zero, and the deflections
outside the boundary can be expressed in terms of those inside the boundary.
Hence, there are only (m - 1) (n - 1) = 56 such equations with 56 unknown
deflections.

The system of equations can be written in matrix form:

- Cu® r M ] lw' +[K] |w| =0 (56)
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where

[ M ] =diagonal matrix of mass Mij

lWI = column matrix of deflection Wij

[K] = square matrix of stiffness coefficients, obtained from the
coefficients of Wij in Equation (55)

In another form,

0 [w] <2 5 ] o]

where

)\2 = sz = wZsz/D

Premultiply Equation (57) by the inverse matrix of [K] s

[ [w] =20 [ e ] Il
: (58)
[w|= \* [K] M | IWI

Rearrange Equation (58),

[I]"‘Z[K]-IITM\]" IW|=O (59)

where

[ I ] = unit matrix = [K]-l (K]
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The frequency equation is obtained as

[I]-xz[K]-l M] =0 | (60)

The natural frequencies of the mass-loadedplate are found by matrix
iteration. Mode shapes are obtained by substituting the frequency in
Equation (58).

For numerical evaluation, a computer program based on this discussion
has been written for a computation of natural frequencies and modes of the
mass-loaded plates. The Jacobian subroutine was incorporated in the pro-
gram to evaluate the eigenvalue A and the eigenfunction W . A modal
mapping subroutine, which will be discussed later, was employed to plot the
mode shapes. The first six natural frequencies calculated by the computer
program for the unloaded and mass-loaded plates of 14-1/2 inches by
16-1/2 inches with fixed edges agree well with the experimental data shown
in Table 2.

Series-Expansion Method

—> <

fat—— O ——tond

r———o———-—

Figure 9. Mass-Loaded Plate

For free vibration of a mass-loaded plate, as shown in Figure 9, the
equation of motion is as follows:

v v w ph+M6(x- £) 6(x-n) % =0 (61)
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where M is a concentrated mass loaded at the location x = £ and y = n. The
other notations are the same as in the finite difference method section. The
delta functions have the following property:

b
Forx=§,y=1'l,foafo f(x,y)6(x-§)(y-n)dxdy=f(§,n)

For x#€, y#m, 6(x-€§)=0and 6 (y-n)=0

Assume the solution to be

wix, y. t) = Wik, ye " (62)
where
W (x, y) = Mode shape of plate
w = Circular natural frequency
Substituting Equation (62) into (61),
v2 v2 W - w2 [ph+M6(x-§)6(y-q)]%=0 (63)

assume W (x, y) to be an approximate solution of Equation (63) with the form

N
Wi(x, y) = Z a; ¥ (x, y) (64)
i=1
where
Ji (%, y) = known functions of x and y satisfying the boundary
conditions,
a; = unknown parameters,

N = number of terms in the series.
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The boundary conditions to be satisfied by the plate mode shapes are
as follows:

Simply Supported Edge:

At x = constant, W =0, oW =0
8x2
2
At y = constant, W = 0, QW =0
Byz
Clamped Edge:
At x = constant, W = 0, AL 0
0x
At y = constant, W = O,—éﬂv— =0
oy
Free Edge:
At x = constant,
9%wW 22w 3> 53
2 + v = 0, + (2 -v) =
ox dy 9x axayz
At y = constant,
2 a%w 23w 3w
2+v = 0, 3+(2-v) > =0
dy 9x2 oy 9x“9y

where

v = Poisson's ratio.

By Galerkins method, the following equation is obtained:

N N
, 2
l;a[) Vzvzz a; 45 - ‘*’D [ph+M5(X~g)5(Y‘n):|z aj ¥
i=1 =1
, (65)
.ij dxdy = 0
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where

After integration, a system of equations is derived, from which the
coefficients aj as well as the natural frequencies and modes can be found,
Solution of Equation (61) can also be found by the Ritz method, another form
of energy approach. In this method, the natural mode W (x, y) of Equation (62)
is expressed in the form

w (X, Y) = Amn Xm (X) Yn (Y) (66)

1 n=1

3 e

where

A

mn

constant to be determined

Xm (x) and Y, (y) mode shapes of beams having boundary conditions

similar to those of the plate.

The natural modes of the mass-loaded beam derived in the '"Mass-
Loaded Beam!' Section can be used.

Strain Energy:

2
_D [*? VELR 82w ,azw 32w 32w
U——ZL L < . +ayz - 2(1-v) - dxdy (67)

dx ax%Z 8y?  \dxdy

Kinetic Energy:

2
1 b 3
K.=—2_/o fo [ph+M5(x-g)6(x-n)]<-alt> dxdy

(68)
=_;_w2 /oafob[ph + M6 (x-£) 6 (X-n)]Wzdde
By Ritz Method:
39(U-K) _ 0 (69)
9Amn
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i.e.,
ou wé 9 2
- ff [Ph+M6(x-§)6(x-n)lW dxdy = 0 (70)
9An 2 0Amn

Substituting Equations (66) into (67) to find U and putting the value into
(70), a system of equations is obtained. The frequencies then are determined
by vanishing the determinant of the coefficients of the unknowns.

It is noted that in Equation (66), the natural mode is expressed in the
form of an infinite series. In practical calculation, solutions of acceptable
accuracy can be obtained by using only a definite number of terms in the
series. If N terms are considered, the system of equations, as well as the
solutions, will be the same as those of the Galerkin method when identical
mode shapes are assumed in both cases.

Since the method of finite difference has been proved to be the simplest
one to compute natural frequencies and modes with good accuracy, neither
the series-expansion method nor the Ritz method is employed in the study.

Modal Mapping Development

The mode shapes of a vibrating plate, either unloaded or mass-loaded,
are of great importance to the vibration analysis. Their three-dimensional
nature makes it difficult to visualize the modal behaviors, especially for the
higher modes. The simple, one-dimensional beam-mode plot is not applicable
to this case. A contour plotting technique similar to that used in lunar surface
mapping was developed and programmed by NAA (Reference 17).

After minor modification, this computer program is found to be suitable
for plotting plate mode shapes with clear and descriptive details. The pro-
gram was written as a group of FORTRAN IV subroutines, which generate
output for subsequent plotting by an SC-4020 CRT (cathode ray tube). The
technique will contour data arranged in a rectangular array. The procedure
is begun with establishment of the algebraic minimum and maximum values
of the data to be plotted and the number of increments between these extreme
values. Then the array is contoured systematically by considering rectangles
having four adjacent points for vertices. The chosen rectangle is then divided
into two triangles by a diagonal that has minimum length between two points.
Since each triangle represents a plane, the problem is reduced to determining
the lines of intersection of the contour planes and the individual triangles.
This determination is accomplished by performing linear interpolations
between the vertices of the triangles to locate points where the individual
contour lines intersect each side. These end points are then paired and
individual segments of contour lines are drawn between them. This technique
involves several approximations, and its fidelity depends on the number of
data points given to be plotted.
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In Figures 10 through 21, the mode shapes of mass-loaded plate,
obtained by the computer program, are presented by means of contour map -
ping. The contour identification, some of the plate parameters, and the
natural frequency associated with the modal shape are included in each plot.
The meanings of the values above each diagram are indicated in the following
example of the second mode (Figure 11):

Contour Ident.

Surface Level Mode Shape
1- 12.5 (negative displacement on level 1)
2- 10.5
3- 8.5
4- 6.5
5- 4.5
6- 2.5
7- 0.5
8 1. 5 (positive displacement on level 8)
9 3.5
A 5.5
B 7.5
C 9.5
D 11.5
E 13.5
F 15.5
Parameters: 2.0 (mode number)

4.0 (case number)
305. 0 (natural frequency)
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Figure 14, Mass-Loading Effects on Plates, Fifth Mode
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Figure 15, Mass-Loading Effects on Plates, Sixth Mode

- 52 -
SID 66-1201




- NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

CONTOUR JDENT.
PARAMETERS

« 500000

:: ::.sooooo 7.000000
3 - 9,500000 4 ,000000
4 - 7,500000 810 ,000000
5 - 5 ,3500000
8 - 3, 500000
T - 1,500000
[ 0, 500000
2,500000
A 4,500000
8 6,500000
(4 8 ,300000
] 10, 500000
E 12, 500000
F 14,3500000
16 ¢ T—'
/ ~ — ~ ) N
/ //- e /‘,4 ~ N — \\ _\\ \
A AP =N
y 7 \ A
1/ NANE\WE)
INVimAvwarie- AN WAV AV
o O T T - Dy D ))
MRS SRp === aB =S MY
N N [Tt S e V.
A === S ~"
10 K& 2> 20 2
] / \\
N1 s NV
- ~- o
[ ]
//( \\
i /[ AN
////4/ \;\\\\
. JRrar4aC IRIBIB N =N
/] T P U S I e N\
/ % = —— I~ LN
YA /’/: |3~ 4_1_;:\ :\\\ ANERN
KK K] SERINRENEN
\ \. AN | / /
\ \ \\ N 2 A // / /
\ \ \\ // [/ /
2 N \ N \‘\¥ 4// l.—) // A
\\ T —~J__ | — -l 4 ¥
AN - = » 4
N o ] A
[ ] B ]
» 2 4 [ ] 8 10 12 14

MASS LOADING EFFECTS ON PLATES

Figure 16, Mass-Loading Effects on Plates, Seventh Mode
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Figure 17, Mass-Loading Effects on Plates, Eighth Mode
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Figure 18, Mass-Loading Effects on Plates, Ninth Mode
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MASS-LOADING EFFECTS ON FORCED VIBRATION AND TRANSMISSIBILITY
CHARACTERISTICS

The problem of vibration transmissibility and response of a mass-
loaded structure subjected to various excitations can be solved conveniently
by the well known classical method based on an assumption of viscous damp-
ing or material damping in the equation of motion. The accuracy of the
solution depends mainly on the correctness of the assumed damping factor.
In practice, the damping factor can be obtained by one of the following
experimental methods:

1. Uniaxial material test — Find the complex modulus of elasticity,
from which the damping factor can be determined.

2. Free vibration test — Find the logarithmic decrement from the
damped vibration curve, then calculate the damping factor.

3. Forced vibration test — Determine the transmissiblity at resonance
from the frequency response curve, then find the damping factor.

The third method apparently gives a direct relation between transmissi-
bility and damping. For a one-degree system subjected to force excitation
at the mass, this is

1
Q = s (71)
where
Q = maximum transmissibility at resonance
¢ = 'f- = viscous damping/critical damping
c

Beyond resonance, the transmissibility becomes

1
\ ]1/2 (72)

_‘*:‘__. &’__
n “n

angular forcing frequency

T =

where

€
"

3
]

angular natural frequency
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An important phenomenon of mass-loading is established by comparing
the transmissibility of a mass-loaded structure to that of the unloaded
counterpart. This phenomenon will be discussed in this section. The
dynamic responses to any other type of excitations then can be estimated by
applying the transmissibility relation between the mass-loaded and unloaded
structures. Thus, any unrealistic assumption of damping is eliminated and
the results are more accurate.

Mass-Loaded Beams

Transmissibility Characteristics

The analytical solution of transmissibility given by Equations (71) and
(72) for a single-degree-of-freedom system can be applied also to the case
of mass-loaded beam, which is equivalent to a multidegree-of-freedom
system. Using a subscript n to indicate mode number, the transmissibility
for the ntk mode is expressed in the form

1
Tn = 1/2 (73)
2 5 2
<1 --"’—>z+4z_, =
nw
n n
At resonance,
Q =(T) = —— (74)
n ' n'max Zén

where {, represents damping factor for the ntl mode of the structure.

Tests were performed in the experimental phase of the program to
obtain transmissibility data for the various mass-loaded beams. The results
are shown in Table 3 for the cases with the mass attached to the beam at its
midspan tested on a mechanical shaker. Notations appearing in Table 3 are
as follows:

W2 = additional weight mounted on the beam = ng
W1 = weight of the beam = m,g
WZ/Wl = weight ratio or mass ratio
= m,/m
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N

G‘2 = maximum response of the mass-loaded beam in g's
measured at the location of the added mass
C'r1 = maximum response of the beam alone in g's measured at
the corresponding location as for G2
QZ = maximum transmissibility of the mass-loaded beam =
G,/G
Ql = maximum transmissibility of the beam alone = G, /G
G = input acceleration in g's
Table 3. Transmissibility of Mass-Loaded Beams with
Mass at Midspan (Mechanical Shaker)
m_/m
2 1 Mode 1 Mode 3
or
WZ/Wl G‘2 QZ GZ/G Cr2 Q2 GZ/GI
0 3.34 334 1.0 2.54 254 1.0
0.25 2.94 294 0. 88 1.16 116 0.457
0. 35 2.68 268 0.80 0.94 94 0. 370
0.5 2.6l 261 0.78 0.80 80 0.315
0.75 2.28 228 0. 68 0.58 58 0.228
1.0 2.03 203 0.61 0.4+ 44 0.173
2.0 1.88 188 0.56 0.33 33 0.130
3.0 1.59 159 0.48 0.12 12 0. 047
Notes: Input acceleration, G = 0.01 g
Beam response, G1 = 3.34 g's
Beam transmissibility, Ql = 334
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It can be seen from Tables 3, 4, and 5 that the ratio of maximum
responses or maximum transmissibility, (GZ/GI = QZ/QI)’ decreases as
the mass ratio, mz/ml, increases. This phenomenon of transmissibility
attenuation, shown in Figures 22 and 23, is one of the most significant
findings of the study.

It is discovered that the relation between the transmissibility of mass-
loaded and unloaded structures can be expressed by the following equation,
with the constants A, n to be determined experimentally or from the
presented curves:

B
y = A+-—-r-1- (75)
x
where
y = GZ/GI
W m
X = I+W—2‘ = l+m—2
1 1
A, n = constants
B = 1-A

This equation, together with the constants A and n, determined from
Figures 22, 23, and 24, may also be applicable to local structures having
similar geometries; however, its general application to other geometries or
different structural properties is not yet certain. Further investigation with
more test samples is required to confirm the validity of the equation's
extended applications to various types of structures.

The lower curve in Figure 22 represents mass-loading effects on
acceleration response of the beam subjected to constant force excitation.

In Figure 24, data of acceleration response (rms) from the random
vibration tests are presented for the mass-loaded beam with mass at its
midspan. Input and output acceleration spectral density plots obtained from
the tests with mass at various locations on the beam were reduced to useful
data similar to those in Figure 24.
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Table 4. Transmissibility of Mass-Loaded Beam with Mass at
7-1/4 Inches (Mechanical Shaker)

mz/m1 Mode 1 Mode 3
or
WZ/W1 GZ Q2 GZ/Gl G2 Q2 GZ/Gl
0. 2.17 217 1.0 1.47 147 1.0
0.25 2.00 200 0. 922 0.72 72 0. 49
0. 35 1.83 183 0. 844 0.45 45 0.31
0.50 1. 63 163 0. 751 0.37 37 0.25
0.75 1.53 153 0. 705 0.25 25 0.17
1.0 1.30 130 0.599 0.13 13 0. 089
2.0 1. 15 115 0.530 0.08 8 0. 054
3.0 1.02 102 0.470 0.03 3 0.020
Notes: Input acceleration, G = 0.0l g
Beam response, G1 = 2.17 g's
Beam transmissibility, Q. = 217

1

Table 5. Transmissibility of Mass-Loaded Beam with
Mass at 4-1/4 Inches (Mechanical Shaker)

mz/ml Mode 1 Mode 3
W
W2 1 GZ Q2 GZ/GI G2 Q2 GZ/GI
0" 1.00 100 1.0 3.00 300 1.00
0.25 0.96 96 0.96 1.11 111 0.37
0.35 0.93 93 0.93 1.07 107 0.36
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Table 5. Transmissibility of Mass-Loaded Beam with
Mass at 4-1/4 Inches (Mechanical Shaker) (Cont)

In?_/n’ll Mode 1 Mode 3
or
W, /W, G, Q, G,/G, G, Q, G,/G,
0. 50 0.75 75 0.75 1.04 104 0.35
6.75 0. 55 55 0.55 0.96 96 0.32
1.0 0. 46 46 0.46 0.37 37 0.12
2.0 0. 39 39 0.39 0.29 29 0.097
3.0 0.29 29 0.29 0.25 25 0.083
Note: Input acceleration, G = 0.0l g
Beam response, G2 = 1.00 g's
Beam transmissibility, Q1 = 100

Forced Vibration Response

Concentrated Force Excitation. The equation of motion of a mass-
loaded beam subjected to a system of concentrated forces and moments can
be written directly from Equation (3) by adding forcing function terms to the
right side of the equation of free vibration:

% s | & 5>
E12Y . 2 J o(x -a,) —Ls
4 0x i i 3 atZ

ax i=1 x
N 2

+]p+ z M,s(x - a )| —Z (76)

b i i 2
i=1 ot

1"

r S
z Fj(t)é(x— bj) + ch(t)é'(x - ¢)
j=1 k=1
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Figure 22, Mass-Loading Effects on Beam (Mechanical Shaker), Mode 1
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Figure 24, Mass-Loading Effects on Beam (Random Vibration Test)

where Fj (t) and Ck(t) are systems of forces and moments acting at the

locations x = b; and x = cj, respectively; r and s are total numbers of
driving forces and driving moments, respectively.

Using the method of normal mode expansion, the solution of Equation
(76) can be expressed as

o o]
, = 77
y(x, t) z q (t)Y (x) (77)
n=1
where
Yn(X) = nth normal mode obtained previously in the section of free
vibration
qn(t) = time function to be determined
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The normal modes satisfy Equation (3), which is written as

-Y = X ZJé(x—a)Y‘
n n i=1

(78)
N
z M, 5(x - ai) Y

where

o= = 2

(o]
=
©

The normal modes also satisfy the following orthogonality condition, which
is derived from Equation (78) by mult1p1y1ng by Y,

and performing integra-
tion from 0 to L:
L N !
f -ZJ_é(x-a,)Y' Y
0 i i’ 'n m
i=1
N (79)
z 6(x-a) YY dx = Oform £n
n m
or, after integration,
L N
/ pPY Y _dx + EMY (@) Y_(a)
0
i=1
N (80)
+ z JY'(2a)Y '(a) = Oform#n
in i "m'i
i=1
For the special case, in whigh J; = 0, Mj = Mand M; = 0 fori # 1,
Equation (80) becomes
L
= f
/o pYnYde + MYn(a)Ym(a) 0 form#n (81)
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After substitution of Equation (77) into Equation (76), multiply the resultiﬁg
equation by Ym(x) and integrate:

EI z q(t)f vy Vy dx
. 0
n=1
® L !
+ Zq(t)/ - zJ&(xa)Y'
n
0
n=1
N
N P Mié(x-ai) Yn Ymdx (82)
i=1 .

r
= ZF(t)/ Y 6(x-bj)dx
!

<

]

L
z Ck(t)[O Yrn 6'(x-ck)dx

Substituting Equation (78) into Equation (82):

o 5 L N '
z [wnqn(t) + iin(t)lf -Z J, bx-a,) Y !
n=1 0 i=1
N
+lp + Z Mi 6(x-ai) Yn Ymdx (83)
i=1
r
z §© Y () - ZC(t)Y'(c)

j=1 k=1

Using the orthogonality condition, Equation (79), and replacing m by n,
Equation (83) reduces to

f (t)
6,0 + ol qf) = (84)

n
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‘ where Q, is the generalized mass and f(t) is the generalized force in the

followmg forms:

Q =fOL pYdx + i M, [Yn(ai)]z " §Ji [Yn'(ai)]"‘

n
i-1 i=1

I
fn(t) ZF(t)Y(b)— zc(t)Y'(c)
j=1 k=1

By convolution integral, the general solution of Equation (84) is obtained
= i B

qn(t) An sin wnt + n cos wnt

(85)

t
1
1 & _t1 1
+w o f fn(t)51nwn(t t?) dt
n no

where A, and B, are constants determined by the initial conditions

. The displacement response is then solved by putting Equation (85)
into Equation (77):

@
S Y(x,t) = z (A sinwt+ B cosw t) Y (x)
n n n n n
n=1

(x) .t

)

Ir
. _
Z F,(t") Yn(bj) (86)

S
z C (t") Y l(c )| sine (t-t') de!

For sinusoidal excitation,
F.(t) = F, sinw, t
J J J

-and

‘ Ck(t) = Ck smwj t
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The response can be obtained in a close form:

Y(x,t) = z (A s1nw t+ B oSO8 t) Y (x)
n=1

J . n .
. - 7
) smwnt > > smwjt (87)
W o-w W, - W
J n J n
s w
_ 1
Z n(ck)C > 5 sinw t
w - W
k=1 k n
(.On . t
- N 5 5 siny
k -wn

For other types of excitation, the response can be found by Equation (86).

Arbitrary Forcing Function. If the forcing function is not a concen-
trated one but of arbitrary distribution, p(x,t), the equation of motion (76)
is

a—ﬁ—-— ZJE)(xa)

ox io1 oxot

(88)

N a2
y _
ZMié(x-ai) Sz p(x, t)

Equations (77) through (81) and Equation (84) are applicable except that the
generalized force in Equation (84) is now in the form

L
fn(t) =_/(; pix, t) Yn(x) dx (89)
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The generalized mass Q, is the same as before. Then the solution of
Equation (84) becomes

qn(t) = A sinw t+ B cosw ¢t
n n n n

(90)
1 t L
] 1 ! 1
+ e p(x, t!) Yn(x) dx s1nwn (t-t') dt
nnoOO O
The complete solution of Equation (88) is
[o9]
yix,t) = z (An s1nwnt + Bn coswnt) Yn(x)
n=1
@ x) t L
Z Pl t1) Y_(x) dx (91)
- sinw (t-t') dt?
n
For p(x,t) = Po Sinwt with p, = constant,
L
fn(t) =4 P, 51nwnt Yn(x) dx
= P, s1nwnt / Yn(x) dx
0
The forced response is
y(x,t) = z (A s1nw t+ B cosw t) Y (x)
n=1 n
z 2 / Y (%) dx|Y (x) (92)
w Q n n
n=l n nlO
w wn
> 2 sinw t - > > Sinwt
W -w W -—w
n n
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Edge Excitation, If the beam in Figure 3 is excited by a given

displacement d(t) of its supports, the problem can be solved by using the
equation of motion for free vibration.

(93)

Assume a fixed end boundary condition:

At x =0, y=d(t), 2L = o

At x =1L, y

It
[o
o
o+
bug
Q
<«
1
o

For transformation of variables, let

wi(x, t)

|
<
1
[oN

(94)
y = w+d

Substitute Equation (94) into Equation (93):

A s [N 3

Er &% - = E J. 6(x-a,) LW
9 x i i

o X izl o xot

2

N

+ |p+ ZM d(x-a) 2w \2’ (95)
. ' Yot
i=1 .

1

N
-le + z Mié(x-ai) d(t)

i=1
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The new boundary conditions are

(s}
€

At x = 0, w = 0, &— = 0
J0 X

At x = L, w = 0, 2¥ - o
J X

The problem then becomes one with a forcing function equal to
N ..
i=1
which can be solved by the normal mode expansion method given previously.

Assume the solution to be

wix,t) = z q,(t) Y_(x) (96)

n=1
Rewrite Equation (84), which still applies to the present case:

£ (t)
. 2 _ n
qn(t) tw q(t) = R (97)

n

The generalized mass Qp is the same as before, but the generalized force
_fn(t) is different.

. L N
() = - dop /0 Y dx s S MY @) (98)
i=1
or fn(t) =< &(t)
where
L N
Cn S - pé Yn(X) dx + z Mi Yn(ai)
i=1
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Equation (97) can be expressed as

q () + 0 V' 99
4,0 0] 9w - g (99)

The solution qy(t) of Equation (99) is found by substituting Equation (98)
into Equation (85).

q (t) =A sinw t+ B cosw t
n n n n n

t
wcg fo d(t') sine_ (t-t") ae! (100)

n n

+

For sinusoidal acceleration excitation at both ends of the beam,

d(t) = 2 sinwt
where
a_ = constant (acceleration amplitude)
then
e ao
a(t) = f/ d(t)dt dt = - —2 sinwt (101)
w
and
g (t) = A sinw t+ B cosw t
n n n n n
“n¥o w “n
+ = TR s1nwnt - —5 3 sinwt (102)
n njw -w W W
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Using Equations (96), (102), and (94), the displacement response to
sinusoidal acceleration excitation is found as

@D

y(x,t) = z (An smwnt + Bn coswnt) Yn(x)
n=1
© coa o w
s R A [2 > sinwt - — 2 sinut | (103)
nn w-w w
n=1 n

- (ao/wz) sinwt

Mass-Loaded Plates

Transmissibility Characteristics

Vibration transmissibility of a mass-loaded plate can be shown to have
similar form as that of a mass-loaded beam given by Equations (73) and (74).
Let m and n be the mode number in x and y directions, respectively. The
transmissibility for mode mn is

1
Ton © 2 2 2 /2
1- = + 4¢ ¢ =
2 mn 2
w w
mn mn
At resonance,
_ _ 1
Qn_ (Tmn)max. Y
mn

where wmp and {,,) are natural frequency and damping factor of the
structure in the mode mn.

Data obtained from the experimental phase of the program (Table 6)
shows that there is similar attenuation of transmissibility as in the beam
cases. An expression for plate transmissibility in the form of Equation
(75) is derived:

0.837
3

X

y = 0.163 +
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Table 6. Transmissibility of Mass-Loaded Plates
(Sinusoidal Vibration Tests)

mz/m1 0 0.7 1.0 2.0 3.0 4.0
Gl' g's 149
G2, g's 149 35 24 22 36.5 31
G,/G, 1.0 0.235 0.168 0.148 0.245 0.208
Notations: m, = mass of the unloaded plate
m, = additional mass on the plate
Gl = maximum acceleration response of the unloaded plate
C‘r2 = maximum acceleration response of the mass-loaded
plate

For any given mass ratio, m,/mj, the transmissibility ratio, G,/ Gy,
can be found from the plot (Figure 25). The transmissibility of the mass-
loaded plate, T, then can be expressed in terms of that of the unloaded

GZ
T, = <G—1>Tl

Vibration tests on the mass-loaded plates with random excitation also
result in similar data. In this case, the response is in terms of root-mean-
square value of the acceleration in g's (Table 7). The plot in Figure 26 shows
the relation between the experimental data and the expression

plate, T-

4
y = 0.22 (1+—)
X
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Table 7. Transmissibility of Mass-Loaded Plates
(Random Vibration Tests)

mz/ml 0 0.34 0.5 0.6 1 2 3 4
L
(Gl)rms‘gs 13
1
(G g's | 13 7 6 5.3 | 5.7 | 5.0 | 4.2 | 2.8
(G,/G1)ms 1.0 0.54 | 0.46 | 0.41 | 0.44 | 0.38 | 0.32 | 0.21

Note that this is also in the form of the general equation

B
y-A+n
x

Figure 27 shows the experimental results demonstrating the attenuation
of acceleration response and higher modes for the mass-loaded plate in
comparison with the unloaded panel.

In Appendix B, X-Y plots from random vibration tests on the mass-
loaded plates are presented to demonstrate the input and output spectral
density at the mass.

MODE 1,

DTEST DATA X RERUN TEST DATA

0.8

S
Gy

y=

e
>

RATIO OF MAXIMUM
ACCELERATION RESPONSE,
o
£

°
~N

o
4

1 2 3 4 5
mssuno,xgug;l
Figure 25, Mass-Loading Effects on Plate
(Sinusoidal Vibration Test)
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@ TEST DATA

MODE 1, 1

2
1

G
G

0.6}— s
y=-0.22 (1+ =)
X2

RATIO OF MAXIMUM
ACCELERATION RESPONSE, y =

0.4—
0.2— 9
01 2 3 4 5

T2
™

MASS RATIO, X =1+

Figure 26, Mass-Loading Effects on Plate
(Random Vibration Test)

Forced Vibration Response

Concentrated Force Excitation. When the mass-loaded plate of
Figure 9 is subjected to a concentrated force excitation, P(t), applied at
X = Xg» ¥ = Yo the equation of motion is

2 2
vV w4+ [ph+Ms(x-£) (y-n) %

(104)

P
= —g—) 6(X-xo)6(y-yo)
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Assume the solution to be of the form

© )
weay,t) =y a W y) (105)
m=] n=1
where
q___(t) = time function to be determined,
mn
Wmn(x, y) = natural modes of plate obtained from free vibration

analysis

The natural modes satisfy the equation of motion of free vibration:

2
2 2 “mn

VYW 0 T B [PhMeee-g)sty-n)| W (106)

They also satisfy the orthogonality condition of the natural modes, which is
derived as follows: For any mode pPq with frequency whg? the mode shape is
qu, which satisfies Equation (106). Hence, '

2
voolw - _pd [ph+M<5(x £) o n)] W (107)
Pq D 4 Pq

Multiply Equation (106) by qu and multiply Equation (107) by Wyn; then
integrate over the plate surface and subtract the results.

| ’ i i [(vzvzwmn)wpq . (vzvzwpq)wmn] dxdy

0 0

D \“mn" wpq

22 (2 2 )foaéb [ph+M6(x-g)6(y-n)] (108)

W W dxdy
mn pq

Integrating by part and using the boundary conditions, the left side of
Equation (108) vanishes.
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The second term on the right side of Equation (108) can be integrated
to be

a b
M6 (x-£)6(y-n) W W dxd
A £)o(y-n) mn Vpq y

= M Wmn(gﬁl) qu(g:n)

Equation (108) then becomes

2 2 2 b
@ - )ph/fw W dxdy
mn pq 0 % mn  pq
(109)
+MW_ (§,n) W_ (g =0
o) pqgn)l
The orthogonality condition is obtained as
h[ [ W W daxdy+ MW _ (&)W (g,q) = 0
pfoo mn "V pq B mn ‘&) W (&0
(110)
for w #w
m pPq

After substitution from Equation (105) into Equation (104), multiply the
resulting equation by qu and integrate,

i iqmn(t)ff (vvw n)Wquxdy

m=

+13 i i (t)f [ph+M6(x £)o(y- n)]w w qudy (111)
=

P
= #‘[0 / 6(x—xo) ) (y-yo) qudxdy
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Substituting Equation( 106) into Equation (111),

i i [wfnnqmn(t)+’<imn(t)]-
m=

1 n=1

. foajob [ph+M6(x-g)6(y-n)] Wmanqudy (112)

= POW_ (x , y )
PqQ o ‘o

Using the orthogonality condition, Equation (110), the above equation is
simplified to

2 Jfmn(t)
q = — 13
d O o g (1) = = (113)

mn

where
Q = the generalized mass and
mn
fmn(t) = the generalized force in the following forms:

b
Q_ - phfoafo W;ndxderM[Wmn(g,q)]Z (114)

fn®) = POW_ (x .,y ) (115)

The general solution of Equation (113) can be found by convolution integral.

q (t) = A sinw  t+B  cosw t
mn mn mn — mn mn

(116)

(t') sinw  (t-t') dt'
mn mn
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where Arnn and B n are constants determined from the initial conditions, or
m

q (t) = A sinw t+B cosw t
mn mn mn -~ mn mn

(117)

P(t')sinw  (t-t')dt!

mn

Substituting the solution of Equation (117) into Equation (105), the displace-
ment response is obtained.

For sinusoidal excitation,

P(t) = Posinwt: with Po = constant,

the solution is in the form

«© o]
w(x,y,t) = Z z (A sinw nt+BrnnCoswrnnt)an(x,y)

@ © POWmn(XO’YO)
+ z Z oo W_ () (118)
mn mn
m=1 n=1
w
d sinw t - o sinwt
2 2 mn 2 2
W -Ww w ~Ww
mn mn

Arbitrary Force Excitation. For an arbitrarily distributed force
excitation, p(x,y,t), the equation of motion becomes

v2v2w+ [ph+M6(x—§)6(y-n)]% = plx,y,t) (119)

Equations (105) to (110) and Equations (113) and (1 14) are applicable except
that the generalized force in Equation (113) is now

a b

() :/ofo P, y, W (x, y)dxdy (120)
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The solution of Equation (113) then becomes

q (t) = A sinw t+B cosw t
mn mn mn mn mn

“ 0 "0

t a b
+——l—/ [/ [ pix, y,t')Wmn(x,y)dxdy (121)
mn mn O

-sinw  (t-t') dt!
mn

For p(x,y,t) = P, sinwt with P, = constant,
a b
= 1 t
fmn(t) /0 fo p_sinw Wmn(x, y)dxdy

(122)

a b

pos1nwt[ / Wmn(x, y)dxdy
0 0

The displacement response is

[eo] @D
z (A sinw t+B cosw t)W (x,vy)
wix,y,t) = mn mn mn mn mn
m=

© P a b
i Y (R AR

1 | ™Mmn mn 0 0 (123)
@ sinw o DR
2 2 “mn = 2 2 oM
w -Ww W -Ww
mn mn

Edge Excitation. If the mass-loading plate is subjected to a displace-
ment excitation, d(t), at its edges, the problem can be investigated from the
free vibration equation (87). Assume a clamped-edge boundary condition:

At x=0 and x = a,

w = df(t), - = 0
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At y = 0 and y

1
o

@
&

wo= d(t), =0

QU
<

For transformation of variables, let

z(x,y,t) = w-~-d

(124)
i.e., w(x,y,t) = z+d
Substitute Equation (124) into Equation (87):
2.2 z
VVz+ [ph+M6(x—§)5(y—q) )
) (125)
= -[erMsx-) s v | )
The new boundary conditions are
At x = 0, and x = a
- 9z _
z = 0, 3% 0
At y = 0, andy = b,
z =0, 22 - 9
oy
The problem then becomes one with a forcing function equal to
-[on + MoGe-) 6(y-m) | o)
The solution of Equation (125) is assumed to be
o0} (o 0]
z(x,y,t) = z z q ()W _ (x,y) (126)
m=1 n=1
Rewrite Equation (113), which still applies to this case.
9nn “mn 4mn®) = 3 (127)

mn
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The generalized mass Qmp is the same as in Equation (114), but the
generalized force fmn(t) is different.

. a b
fmn(t) = - d(t)/o /O [ph+M6(x—g)6(y-q) Wmn(x,y)dxdy
. a b
- - d(t)[ph[o /o wmn(x,y)dxdy+Mwmn(§,n)] (128)
= c d(t)
mn
where
a b
<= - ph/ofo Wmn(x,y)dxdy+MWmn(§,q)]

Equation (127) then becomes

C
i O+l a1 = 2R (129)

The general solution of Equation (129) is similar to Equation (116).

q (t) = A sinw t+B cosw t
mn mn

(130)

_mn TR IREE
+ o 0 4 d(t )s1nwmn(t t')dt

For sinusoidal acceleration excitation applied at the edges,

d(t) = a_ sinwt
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where

constant, amplitude of acceleration.,

)
1

Then,

f/ d(t) dt dt

d(t)

- ]j a_sinut dt dt (131)
a
o .
= - —— sinwt
w2
The displacement response is
[es) «©
wi(x,y,t) = Z z (A sinw t+B cosw t)W (x,v)
mn mn mn mn mn
m=1 n=1

me=1 n-l mn mn
(132)
w
mn .
- sinwt
> 3 51nwmnt > > 1
-W w ~Ww
mn mn
a
-2 sinwt
wZ
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MASS-COUPLING EFFECTS

Mass-coupling is an extension of the mass-loading problem in the sense
that it deals with a system having an additional spring of finite stiffness
between the two masses. This corresponds to a situation in which a compo-
nent is attached to a local structure by relatively flexible brackets., Obviously,
if the stiffness of the brackets relative to that of the local structure could be
gradually increased, the problemn would eventually change from one of mass-
coupling to one of mass-loading.

The analysis of mass-coupling phenomenon may be performed for a
continuous system representing mass-loaded beams and plates; however, it
requires a tedious mathematical treatment and laborious manipulation to
obtain numerical solutions, Furthermore, the coupling phenomenon is
difficult to be intuitively visualized. For practical purposes, the mass-
coupling system of a lightly damped metal structure can be quite accurately
represented by a conventional two-degree-of-freedom model. The component
(or equipment) is represented by the mass with its flexibility represented by
the bracket. If the dynamic properties of the component become much less
important than those of the mounting, the component itself is represented by
the mass with high rigidity and the mounting device is represented by the
bracketry having a finite stiffness and a damping factor. The unloaded local
structure may be approximated, in such a case, by a simple spring-mass-
damper combination. Since local structures are of solid-metal material with
slightly damped properties, the simplified analytical model is justified without
introducing significant errors. In the mass loading situation, however, the
behavior of the supporting structure is very important; and it becomes
necessary to use a multi-degree-of-freedom simulation and include the
effects of all the parameters involved in the equation of motion which
describes the dynamic behavior of the mass-loaded structural system. In
particular, the effects of damping increase in importance and a good knowl-
edge of its nature and its variation with mass-ratio is essential.

A thorough investigation of the mass-coupling phenomenon and of the
conditions under which the problem changes to mass-loading must be
performed to find the limitations of the mass-loading approach and its
applications. The interaction among the mass-loading, mass-coupling, and
damping are studied under both the sinusoidal and random excitations.

The mass-coupling problem under sinusoidal excitation in a form of
vibration absorbers and mass-dampers has been well known in dynamics for
a long time. Some of the earlier work for simple dynamic systems was pre-
sented by Timoshenko (Reference 18) in 1928 and Den Hartog (Reference 19)
in 1956.
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Random vibration problems of two-mass systems has been investigated
by Curtis and Boykin (Reference 20) in 1961, Crandall and Mark (Refer-
ence 21) in 1963, and Morrow (Reference 22) in 1955, Curtis and Boykin
solved the response to white noise problem in a form of integral functions in
terms of mean square displacements numerically presented in a range of
mean square displacements numerically presented in a range of dimension-
less parameters. Crandall and Mark employed the same approach with more
detail analytical derivations and presented the results inmean square accelera-
tions as well as mean square displacements. Morrow treated the problem
based on an assumption that the upper mass does not load the lower mass.
Three of these studies were theoretical work and were investigations
limited, as most of the earlier dynamic absorber studies, to the two-mass
systems with upper mass smaller than the lower mass; hence, the practical
application of these results to localized vibration problems for aerospace
vehicles is limited.

At NAA, the mass-coupling problem was analytically as well as
experimentally investigated for sinusoidal and random vibration cases by
the principal investigator and his associates (Reference 23) since 1962,
Earlier, from 1957 to 1959, some analytical work was performed by the
principal investigator as part of a research paper (Reference 24) at the
University of Southern California, under the supervision of Professor
C.R. Freberg. The investigations now under way are intended to extend
these works in terms of mass-loading effects and to investigate the inter -
action among the mass-loading, mass-coupling, and the damping phenomenon
for different objectives and applications in solving the vibration problems for
localized aerospace vehicle structures. Since there is a wide range of
component masses that may be mounted to the local structures of aerospace
vehicles, the investigation includes the cases for the upper mass smaller and
larger than the lower mass.

Sinusoidal Excitation

The equations of motion for a multidegree-of-freedom system may be
written, in matrix notation, as

[m] {%} + [c] {x} + [k] {x} = {F(t)}
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X n(t) x5(t)
e .

k
T 212 + %kZ 1 (¢) 7 21 °2+ 2 %, ()
] x, (t) F(t)
77] A + %k] Xo(f) YI],c] k] x (f) n]lc] %k]
o o

Figure 28. Mass-Coupling System

For the two-mass coupling system shown in Figure 28, the equations
for free vibration are:

m, X, + Cl(xl - xo) + CZ(Xl - XZ) + kl(xl - xo) + kz(x1 - XZ) = 0 (133)

m X, + CZ(XZ - Xl) + kZ(XZ

-Xl) = 0 (134)
The equation of motion for the single-mass system is:

m, X, + cl(x1 - xo) + kl(xl - xo) = 0

The stiffness of the system can be represented by a complex number K*
incorporating the stiffness produced by both the spring and the damper. The

complex stiffness, k™, can be expressed as

k* = k+ ik’

k'
k<1+1 k)

k(1 + ia)
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where

k and k'

stiffness values found from experiments

a@ = damping factor defined as the ratio of the imaginary part
to the real part of the complex stiffness. Its relation to
structural damping factor (n), as defined by Kelvin,

- ()

@ = uncoupled frequencies =\ /r—l;-

For the two-mass coupling system shown in Figure 28, the equations
for base excitations can be written as

I
o

-m szl + kZ*(X

1 S X)) AR X - X))

1

It
o

-m WX+ kz*(X

2 2 - X))

2 1

where XO’ X., X_ = amplitude of Xy X1r Xy respectively.

1 2

For the single mass system, it becomes

2 g
- - - X = 0
m,w Xl + kl (X1 o)

Solving for these equations, the transmissibility defined by the displacement
ratio is obtained.

/m - wz)

[
7\"
/'\

1
x

2
o (kz/mz-w)<kl -mw)-kzw

T =
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or

=

1l
P I._

il

2 2
2 2
W “\w K/ w
| ' 4 2 i 2 2 12 212
m, ) k2 i_l. 2 i% w, w, ﬁ
+ m ,: k— “\w W +k + Tw + T « 1- w
™y 2 1 1 1

Similarly, for the force excitation case, solutions can be found from
the following equations of motion:

A}

2 sk sl
-m e Xtk (X =X ) Fk X

R | F(t)

1

mowtX . k(X

2 2 2 X))

2 71

|
(@]

Numerical solutions in terms of various parameters can be easily obtained
through the use of computers.

Cases of base excitation may represent problems of mechanical vibra-
tion applied at supports while force excitation cases may be considered as
acoustic forces or electromagnetic induction forces applied to the support
structure.

Random Excitation

Random vibration analyses of simple structures have been presented
by several authors with an identical approach (References 20 through 29).
The effort of this program and related earlier studies has been directed
toward similar basic approach to investigate the mass-coupling phenomenon
interacted with mass-loading effects on localized random vibration environ-
ment for aerospace vehicles, To maintain a concise presentation of the
subject investigation for a physical system and to avoid mathematical compli-
cations, only random vibration excitation having white noise characteristics
is to be considered.
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As shown for the sinusoidal case, the equations of motion remain as

m X, + cl(xl-vxz) + CZ(Xl - XZ) + kl(x1 - XZ) + kz(x1 - XZ) =0
m,X, + CZ(XZ - Xl) + kZ(XZ - Xl) = 0
= 0

mlx1 + cl(x1 - Xo) + kl(x1 ~ xo)

The transmissibility functions can be expressed in terms of acceleration
for the upper mass (Tl) as well as for the lower mass (T},).

2 2 .3 2( 2
T, = [“’1 Wy tiw2bie; -w (“’1 +441‘-‘2°’1‘”2)

2 2 -1
+ iwz(élwlwz + t”Zwal )] (B)

> -1

2 2 . 2 2
Iz = [‘”1 Y Tedb hee T 1“’.2(’;1“’1“" 2t 5222 )](B)

where
m + m
4 . 3 1 2
B = v -y, [41“1 * Z-‘2‘“2( m, >]
2| 2 2 [Tt ‘4t
TP T2 1 172%°1%2
+ o]t 2, 2], . 2,2
9171142 292¢1 1“2
T = -1

wlz - wz + Zi(,lwlw

For linear systems, the acceleration spectral density of the random
vibration response is obtained from the product of the input acceleration
spectral density and the square of the transmissibility curve, which is
essentially the same for sinusoidal case. Hence, the response acceleration
spectral density to white noise random vibratory excitation is directly propor-
tional to the square of the transmissibility curve. The mean square response
is equal to the area under the response spectral density plot.
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The mean square acceleration response for the upper mass (|A2|2) and

for the lower mass (IA1|2) is

[e0]
2 2
a? - / alr e

- @
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Interaction of Mass-Loading, Coupling, and Damping

SPACE and INFORMATION SYSTEMS DIVISION

A study of the parameters involved in the dynamic equations in the
previous paragraph can provide an intuitive insight of the relations among
mass-loading, frequency coupling, and damping effects in relation to a

single-mass system.
and applications can be readily inspected.

From these relations, the interactions, limitations,

Figure 29 shows the behavior of the upper mass (mj) by curves 1 to 8,
and the lower mass (rnl) by curves A to H. From this figure, it is apparent
that frequency coupling effects are free from mass-loading after the frequency
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ratio reaches approximately five (wp/w]; = 5), Thus, the mass-loading
phenomenon applies only in the mass-loading region, which may be defined by
(w2 /w1 > 5), without introducing a significant error. When the frequency
ratios become less than five (w;/w] < 5), coupling effects in terms of frequency
ratios are gradually enlarged; however, mass-loading effects are still playing
an important role in the mass coupling region (wp/w; = 0 to 5). The chart has
been prepared by assuming damping ratios (62 = 0,005 and ¢y = 0.03) which
are the generally expected range of damping for standard metal structures.
Sixteen cases of different mass ratios are considered, from very small upper
mass (mp = 0.0lm;) to very large upper mass (mp = 9m;). Forty-two
frequency ratios ranging from 1 to 10 are investigated and presented.

An identical study is made and plotted in Figure 30 for the case of a
constant damping ratio ({1 = {2 = 0.03). It is found from Figure 31 that
common values of damping for metal structures have little effect on the
response in either mass-loading or mass-coupling regions; they introduce
further attenuation of the motion of the upper mass only when the system has
a very small mass ratio (m2/mj << 0, 1). The presence of these damping
factors or the increase of damping, however, does not help reduce any
vibration amplitude of the lower mass; the response, on the contrary, is
amplified with the increase of damping for a small mass ratio (mj /mjy < 1)
and becomes independent of damping for larger mass ratios (mj /my 5 1).

Figure 32 shows that the maximum attenuation can be accomplished by
a mass-coupling design; the presented minimum response values are each
associated with a specific frequency ratio, a specific mass ratio, and the
constant damping ratios. The maximum mass-attenuation can be obtained by
a mass-loading design within the mass-coupling region as shown in Figure 33;
again, each of the minimum response values of the presented curves is
subjected to the specific requirements, This figure also illustrates the
significance of the mass-loading effects even within the region of
mass -coupling.
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EXPERIMENTAL INVESTIGATION

The objectives of the experimental study portion of the program are
as follows:

1. Mass-Loading Effects

To obtain data for concentrated rigid mass-loading effects on the
natural frequencies, mode shapes, acceleration responses, and
damping of the supporting structures, which typify the localized
structures of a rocket vehicle mounted with equipment masses.

2, Mass-Coupling Effects

To obtain data for mass-bracketry-coupling effects on natural
frequencies, vibration response of the primary structure, the
secondary structure, and the integrated system.

3. Effects of Various Excitations

To obtain data for vibration transmissibility of the mass-loaded
and mass-coupled structures due to various types of excitation
including

a., Sinusoidal input from a mechanical shaker, electro-magnetic-
induction shaker, or acoustic chamber,

b. Random input from a mechanical shaker or acoustic chamber.

SPECIMEN DESIGN AND FABRICATION

-

To accomplish the objectives, two types of basic structural models
typifying the localized structures of a rocket vehicle were designed and
fabricated as described in the following paragraphs.
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Figure 34. Mass-Loaded Beam Model

Mass-Loaded Beam Models

The mass-loaded beam models consist of a uniform beam and eight
rigid masses. The beam is made of aluminum alloy 6063-T6 and is
28 inches long. The unsupported length of the beam is only 24 inches
(Figure 34)., The masses are made of aluminum, brass, or lead and are
of different sizes to give various weight ratios (Table 8). The reason for
using a different material for the masses is to minimize the size of the
weights and, thus, reduce the rocking-motion effect during vibration
testing,

During the testing, the eight masses were mounted on the beam, one
at a time, at one of the three locations (4-1/4 inches, 7-1/4 inches, and
12 inches from one end) to constitute twenty-four mass-loaded beam models.

Mass -Coupling Beam Models

The mass-coupling beam model typifies a structural system with a
heavy mass mounted on a bracket, which, in turn, is attached to the primary
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Table 8, Details of Mass-IL.oaded Beam Models

Weight
Item Material Size (Pounds) Wa/wb
Beam, Wy Alum, 6063 T-6 0.190x 1-1/2 x 28 0. 66 0
W1 Aluminum 0. 165 0. 25
WZ Brass 0.231 0. 35
o W3 Brass 0. 33 0.50
= .
- w Brass 0. 495 0.75
g 4
@ \ Brass 0. 66 1.0
« 5
> _
W6 Brass 0.982 1.5
W,7 Lead 1.32 2.0
W8 Lead 1.98 3.0
Wa = Weight of rigid masses
Wb = Weight of beam of 24-inch span

structure. The design principle of such a model is to construct the
secondary spring-mass systems (bracketry and mass) to produce natural
frequencies that are lower than, equal to, or higher than, the natural fre-
quency of the beam.

The bracketry is made of thin aluminum tubing and shaped to a
circular ring (Figure 35)., Two masses, W3 and W4 (Table 8), used in the
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mass-loaded beam models were attached, one or two at a time, to the
bracket to produce three secondary spring-mass systems:

1. Mass A: W W_ .+ W

A S 3 0.360 1b

1}

2. Mass B: W

.52
B WS+W 0.525 1b

i

4

3. Mass C: WC = WS+W4+W3 = 0.8551b

(WS = 0.031b = weight of upper accelerometer housing)

These three mass-bracketry systems were cemented to the beam at

three locations, as in the mass-loaded beam tests, to form nine models for
the mass-coupling tests,

~
~

]
I
\  1-1/21N.
~ |- :
MASS
!_--T--j/
4 — HOUSING OF ACCELEROMETER NO . 5,
3/“; IN. r 1 ALUMINUM
U 1-1/16
L INCR
1/8 IN. )
- 0.030 IN.
5/32IN. 1 ! i \
} LOWER ACCELEROMETER
e 1IN~ HOUSING , ALUMINUM

Figure 35, Mass-Bracket System for Mass-Coupled Beam Model

Mass-Loaded Plate Models

The mass-loaded plate models consist of a rectangular aluminum flat ‘
plate and seven rigid masses, which are bolted to the middle of the panel, one
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at a time, to constitute seven mass-loaded plate models., Details of these
models are given in Table 9.

It is noted that the size of the basic flat panel is 0. 190 x 16 x 18 inches;
however, the unsupported size of the panel is only 14-1/2 x 16-1/2 inches
because a 3/4-inch-deep border is clamped along four edges during testing,

Mass-Coupled Plate Models

The mass-coupled plate models are similar to the mass-loaded plates,
although the masses are not directly mounted on the plate; instead, they are
attached to a pair of Z-shaped steel brackets that are bolted to the plate,
Figure 36 shows a typical arrangement of a mass-coupled plate model.

The basic plate has the same dimensions as the mass-loaded plate.
The only difference is the location of the holes for mounting the brackets,

All seven masses used in the mass-loading tests are employed to form
seven mass-coupled plate models.

Mass-Loaded Beam-Plate Models

The mass-loaded beam-plate models are similar to the mass-coupled
plate models; however, the Z-bracket of the latter is extended to 16-1/2
inches as shown in Figure 37. The Z-brackets are spot-welded to the basic
plate,

Test Fixtures

Beam Test Fixture

The fixture used for the beam tests is a U-shaped aluminum block. As
shown in Figure 38, a rectangular piece of aluminum plate with four bolts
is placed at each end of the fixture to serve as a clamp to hold the beam in
position, This arrangement results in excellent boundary conditions for the
fixed-end beam. A 3/8-inch-thick aluminum plate, also of U-shape, is
screwed down on one side of the fixture. This plate stiffens both ends of the
fixture and prevents rocking motion of the beam supports. It also serves as
the support and guide for the proximity gage, which measures displacement
of the mass-loaded beam during tests.

The stiffened fixture has a fundamental natural frequency of 750 cps,
which is well above the fourth natural frequency of any test model, and
causes no jig resonance during the tests. It is noted that the fourth mode is
the highest planned for tests.,
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Plate Test Fixture

The plate test fixture consists of the following aluminum parts: a base,
four spacers, and four clamp bars (Figure 39), Test specimens (the mass-
loaded or mass-coupled plate model) are placed on top of the base of the
fixture and clamped along the four edges by the clamp bars., The fundamental
frequency of the fixture is about 1200 cps, which is above the highest fre-
quency planned for the tests. Resonance of the fixture does not influence the
responses of the test models,

TEST CONFIGURATION

Shakers and Test Equipment

Mechanical Shaker

Base excitation of the clamped beam and plate models was provided by
mechanical shakers of the Type MB C25 H (2500-pound) and associated equip-
ment, such as power supply units, oscillators, amplifiers, oscilloscope,
oscillograph recorder, x-y plotter, electronic counter, attenuator, calibrator,
filters, etc.

Electromagnetic-Induction Shaker

For the beam sinusoidal tests an electromagnetic-induction shaker was
employed. The shaker is constructed by winding heavy-gage copper wire
around a U-shaped permanent magnet (Figure 40), It operates on the princi-
ple of eddy current induced in the specimen by the electromagnetic field of
the shaker. Interference between the magnetic flux of the eddy current and
those of the magnetic field of the shaker causes motion of the specimen, This
system offers several advantages for vibration tests:

l.  No contact between the shaker and specimen is necessary; thus,
the test set-up is simplified and jig resonance effect is eliminated.

2. Excitation that is equivalent to a concentrated force input can be
applied at any location on the specimen.

3. Excitation can be turned on and off instantaneously to produce
excellent damping curves on oscillographs.

4. Magnitude of the exciting force can be controlled easily,

5. The system is more stable; response data on x-y plots or oscillo-
graphs are clearer and cleaner than those from mechanical shakers.
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The electromagnetic-induction shaker does have some disadvantages:

1. Excitation cannot be applied at the mass of the mass-loaded or
mass-coupled specimen,

2. System response varies with the location of the shaker and causes
difficulty in data comparison.

Acoustic Chamber

An acoustic reverberant chamber was used for acoustic tests of the
mass-loaded plate models, The chamber can produce sound pressure levels
up to 150 db. Sinusoidal, as well as random signals, can be used to perform
desired tests at various sound pressure levels,

Test Set-Up
Beam Models on Mechanical Shaker (Figure 41)
Mechanical shakers were used for sinusoidal and random vibration

tests of the mass-loaded and mass-coupled beam models, Procedures of the
test set-up are as follows:

1. Clamp both ends of the beam on the test fixture (Figure 38). Apply .
dental cement at both ends before clamping to ensure fixed-end
conditions.

2. Glue or cement the strain gages and accelerometers at various
locations on the beam (Figure 42).

3. Install the proximity gage on the guide plate (Figure 42).

4, TFasten the base of the fixture on top of the shaker. Apply dental
cement at the joint before screwing together.

Beam Models with Electromagnetic-Induction Shaker

The test set-up for the beam models using the electroinduction shaker
is as follows:

1. Repeat procedures (1), (2) and (3) used for the mechanical shaker.

2. Cement the base of the fixture on a heavy test table, a reinforced
concrete block weighing 1-1/2 tons.

3. Clamp the shaker on a stand.
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Figure 42, Test Set-Up for Beam Model

4. Place the shaker 1/8 inch above the beam and 4-1/2 inches from
the right support (Figure 42).

Plate Models on Mechanical Shaker

Sinusoidal and random vibration tests of the mass-loaded and mass-

coupled plate models were performed on a mechanical shaker. The test
set-up is as follows:

1. Clamp the four edges of the plate on the fixture (Figure 39). Apply

a thin film of oil along the edges to provide a fixed boundary
condition,

2, Cement and screw down the base of the fixture on top of the shaker.

3. Install accelerometers and strain gages on the plate models as
shown in Figures 43, 44, 45, and 46,

Acoustic Test Set-Up for Mass-Loaded Plates

For acoustical vibration tests with either sinusoidal or random excita-
tion the mass-loaded plate models were clamped to the opening of the acoustic
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Figure 43. Test Set-Up for Mass-Loaded Plate
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Figure 44. Instrumentation on Mass-Loaded Plate
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Test Set-Up for Mass-Coupled Plate

Figure 45,
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Figure 46. Instrumentation on Mass-Coupled Plate

- 114 -
SID 66-1201



‘NORTH AM ERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

reverberant chamber with accelerometers and microphones placed at
various locations as shown in Figures 47 and 48,

Instrumentation

Sinusoidal Vibration Tests on Beam Models

The instrumentation hook-up for the mass-loaded beam tests with
sinusoidal excitation from the mechanical shaker is shown in Figures 49
and 50.

The instrumentation hook-up for excitation from the electroinduction
shaker is essentially the same as that for the mechanical shaker, except that
some equipment related to the mechanical shaker is replaced by that shown
in Figure 51,

Random Vibration Tests on Beam Models

Instrumentation for the mass-loaded and mass-coupled beain tests with
random excitation is shown in Figures 52 and 53. It is noted that, for these
tests, only the mechanical shaker was used. The same equipment was used
for plate tests.
Vibration Tests on Plate Models

Vibration tests on the mass-loaded and mass-coupled plate models with
sinusoidal and random excitation were performed on the mechanical shaker.
This instrumentation hook-up also is shown in Figures 52, 53, and 54.

Acoustic Tests on Mass-Loaded Plates

The instrumentation hook-up for acoustic tests on the mass-loaded
plate models is shown in Figure 55.

System Calibrations

Sinusoidal Vibration Tests on Beam Models

Test data measured by accelerometers and strain gages were recorded
on oscillographs for the mass-loaded and mass-coupled beam tests with
sinusoidal excitation from either a mechanical shaker or electroinduction
shaker. The output of one of the accelerometers at the location of the mass
also was recorded on X-Y plots and monitored by voltmeters.

The proximity gage, which measures mode shapes at various locations

along the beam, was monitored by voltmeters, Since only the relative lateral
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Figure 47. Acoustic Test Set-Up
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Figure 48, Instrumentation on Acoustic Test Set-Up
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Figure 50.

ELECTRICOUNTER

Instrumentation for Beam Model Test

POWER ELECTROINDUCTION
OSCILLATOR ATTENUATOR AMPLIFIER SHAKER
Figure 51. Instrumentation Hook-Up for Electroinduction Shaker
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Figure 55, Acoustic Test, Instrumentation Hook=up
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displacements were of interest, direct readings from voltmeters were used
as the mode shape data requiring no calibration, Other necessary calibra-
tions are as follows:

Accelerometers, Five miniature accelerometers were used for
acceleration measurements. The acceleration output in g's is calculated by
the following formula:

a = 1/SG g's/volt

where.
S = sensitivity of accelerometer, volt/g
G = accelerometer amplifier gain factor
a = acceleration in g's per volt

Table 10 gives the values of acceleration calibrated for each accelerom-
eter, Accelerometers 1 to 4 were attached to the beam and its support as
shown in Figure 42, Accelerometer 5 was mounted on top of the bracket for
the mass coupled beam test as shown in Figure 35.

X-Y Plots. X-Y plots were made for the acceleration responses at
the mass locations on the beam., The calibration voltages, the ordinates on
the plot, are multiplied by ''a', the calibrated acceleration, to obtain the

response amplitude in g's:

A = aVv

Table 10, Accelerometer Calibrations

Accelerometer
Number S G a
1 0.00138 100 7.25
2 0.006 100 1.665
3 _ 0.0056 100 1,785
4 0,007 100 1,428
5 0.00107 100 9.34
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where

A

acceleration response amplitude, g's, and

v

calibration voltage, volts,

Oscillographs. Eight channels of vibration measurements have been
recorded on oscillographs for each test. Four of them are for accelerom-
eters and the others for strain gages. To convert the oscillograph data into
useful forms, the following calibrations were performed.

Accelerometer Records. The frequency factor Kj for the ith accelerom-
eter is determined with

Di
Ki = Sf—l
where
Di = double amplitude of the record of frequency calibration at a
reference frequency (20 cps in this case) for the ith channel
Dfi = double amplitude of the record of frequency calibration at the

test frequency for the ith channel

The values of Kj are given in Figure 56, This factor is used to correct
the nonlinearity of the accelerometer output due to changes in frequency.

The calibration factor Bj is calculated with

a

R T
Bi = Di g's/volt

where a; are values of "a'' in Table 10,
The actual acceleration output, Ai’ is given by

B.V.d,

1 11
A, = —F]—— g's
i K.c, g

i’i
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FREQUENCY (CPS)
Figure 56. Frequency Factor for Accelerometer C..librations
where
Vi = calibration voltage, volts
di = double amplitude on data records, inches
c. = double amplitude on calibration record, inches

Strain Gage Records. The measurement of the strain gages is calcu-
lated by the formula,

c - G
+
ZNK(RG Rc)
where
€ = strain intensity = strain per inch of the double amplitude of
strain gage record

Rg = 120 ohms = gage resistance
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R = 87,500 ohms = calibration resistance
N = 2 = number of active resistors on bridge of strain gage circuit
K = 1,97 = gage constant

By substitution,

120
2x2x1.97 (120 + 87, 500)

o |
!

0.174 x 102 in. /in. of
double amplitude.

The maximum strain e, is the product of the strain intensity, _g, and
the double amplitude, d, of the oscillograph of the strain gage; namely,

In some cases the data record, d, was attenuated during tests by a
factor, m. The total strain then becomes

Random Vibration Test on Beam Models and All Vibration Test on Plate
Models

Calibration of all accelerometers mounted on the test specimens was
accomplished prior to testing., System calibration on all accelerometer
channels was performed prior to testing using the voltage insertion method
as shown in Figure 57. A precision internal calibration source was used to
record calibration signals on tape. This source supplies a calibrated charge
to the input of the amplifier, the peak-to-peak value of which represents the
peak-to-peak full-scale output value sent to the recorders. Nominal fre-
quency of the calibration is 1000 cps with a rates full-scale output of 5 volts
peak or 10 volts peak-to-peak.

The tape transport FM record amplifiers were calibrated for 15 ips
with a center frequency of 54 kc to receive an input signal of 5 volts peak or
10 volts peak-to-peak for a 40-percent carrier deviation,
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Figure 57. System Calibration

Strain gage calibration was accomplished by the shunt method, using
the relationship

with a strain gage resistance, R_, of 350 ohms and a gage factor, K, of 3,18,
A value of 300 microstrain can be simulated by a shunt resistance of

365, 000 ohms. A shunt voltage, Eg, of 15 volts dc was selected for bridge
excitation to produce a maximum output from the amplifier of 2. 8 volts for

a 200 microstrain calibration.

With respect to the strain gages, the tape transport FM record ampli-
fiers were calibrated for 15 ips with a center frequency of 13.5 kc to receive
an input signal of 2.8 volts dc for a full-scale 40-percent carrier deviation.
This level now represents 300 microstrain zero to peak.
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VIBRATION TESTS

Vibration tests with various types of excitations have been performed
on the beam and plate models to investigate the effects of mass-loading and
mass-coupling, The test procedure generally were begun with resonance
surveys to find the natural frequencies and modes of the structure, then
were carried on to obtain data for the dynamic responses, Details of the
test procedures are described in the following paragraphs:

Beam-Model Tests

Mass-Loading Tests With Sinusoidal Excitation From Mechanical Shaker

1. Perform a resonance survey for the beam model (without addi-
tional mass)., Maintain a constant acceleration excitation equal
to 0.01 g at all test frequencies from 0 to 600 cps.

2. Obtain X-Y plots for the acceleration responses of the three
accelerometers (Numbers 1, 2, and 3) at the three locations of
the beam (Figure 42) within a frequency range of 0 to 600 cps,
which covers the first four natural frequencies of the beam.

3. Take oscillograph records at each resonance of the first four
modes for all pickups including one input and three output
accelerometers, and four strain gages. For each natural mode,
there is a set of records for the response data together with a
set of records for calibration.

4, At each resonance, obtain proximity gage measurements for mode
shapes,

5. Repeat the above procedures, 1 through 4, for sinusoidal vibration
tests on the mass-loaded beam models (Table 8). For each
model the mass is cemented on top of the accelerometer housing,
which, in turn, is cemented on the beam at one of the three loca-
tions of the accelerometers (Figure 42). There are eight different
masses constituting twenty-four test models to have twenty-four
test runs as described in Steps 1 through 4 above.
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Mass-Coupling Tests With Sinusoidal Excitation From Mechanical Shaker

The secondary mass-bracket system, as shown in Figure 35, was
used to form nine mass-coupled beam models. For each model, the
following tests were performed:

1.

5.

Cement the mass-bracket system on the beam at one of the three
accelerometer locations (Figure 42).

Find the natural frequency of the secondary system by inserting
a solid block between the beam and the shaker so that excitation
transfers directly to the secondary system,

Perform a resonance survey employing sinusoidal sweep.

Take oscillograph records for all pick-ups as in Step 3 for mass-
loading tests.,

Obtain voltmeter readings of maximum responses for all
accelerometers.

Mass -Loading Test With Sinusoidal Excitation From an Ele¢ctro-Induction

Shaker

The test procedures are identical with those for the mechanical shaker,
except that an electroinduction shaker replaces the mechanical shaker as
described before in the section on test set-up, Two additional steps are
performed, however:

1.

At the beginning of testing, perform a survey on forcing function,
At a constant voltage (1 volt) input to the shaker, use a proximity
gage to measure deflections at several locations along the beam
(no mass added) at the first resonance. The amplitude of the force
is then calculated by a conventional method from strength of
materials,

Obtain damping curves on oscillographs for the first four modes of
all test models., At 1-volt input to the shaker, tune the model to a
resonance, Then, turn off the electrical input to the shaker.
Meanwhile, take oscillograph records of the accelerometer
outputs.
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Random Vibration Tests With Mechanical Shaker

Apply 20 seconds of random vibration with a power spectral den-
sity of 0. 001 gz/cps to the test model. The total frequency
bandwidth varies with each model so that the excited frequencies
are limited to the first four natural modes.

Record all outputs of the accelerometers and strain gages on
magnetic tape.

Obtain X-Y plots for output spectral densities through data re-
duction processes.

All mass-loaded beam models are subjected to above random
vibration tests.

For mass-coupling tests, the secondary mass-bracket system
is mounted only at locations A and B on the beam (Figure 34).
The above procedures 1 through 3 apply to the mass-coupled
models.

Plate Model Tests

Sinusoidal Excitation

1.

Perform a resonance survey of the unloaded and mass-loaded
plate models using a sinusoidal sweep at one minute per octave
from 20 to 1, 200 cps.

Use a constant acceleration of 1 g as excitation input in a fre-
quency range from 20 to 1, 200 cps.

Record all outputs of the accelerometers and strain gages on
magnetic tape.

Through data reduction processes, obtain X-Y plots for the
acceleration responses of all pickups.

Repeat above steps 1 through 4 for all mass-coupled plate models.

Random Excitation

1.

Apply random excitations to test models, one at a time, including
the plain plate and all mass-loaded plates. Use constant input
power spectral density of 0.1 gZ/cPs over a frequency band from
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20 to 1,200 cps. The upper frequency band varies with each
model so as to cover the same number of modes for all models.

2. Record the output spectral densities of all pickups on magnetic
tape.

3. Obtain X-Y plots for above outputs.
4. Repeat steps 1 to 3 for tests of mass-coupled plate models.
Acoustic Excitation

1. Set up the test model in the acoustic reverberation chamber.
Apply sonic pressure at levels of 117, 120, 123, 127, 130, 133,
136, 139, and 142 db using a sinusoidal sweep from 20 to
2000 cps.

2. Perform random vibration tests. Apply sonic pressure at the
same levels as in Step 1; however, use narrow-band white-noise
random inputs having 1/3 -octave bandwidth and 1/2-power band-
width about the first modal frequencies. As with vibration tests,
no appreciable response was recorded at higher frequencies other
than that of the fundamental modes when a wide-band (20-2000 cps)
white-noise random spectrum at 140 db was applied. No wide-
band random acoustic tests, therefore, become nacessary.

Beam-Plate Model Tests

Vibration tests on the mass-loaded beam-plate models were performed
on a mechanical shaker with sinsoidal and random excitations. Test pro-
cedures are identical with those for the plate model tests.

DATA ANALYSIS

Some of the data from the vibration tests on the beam and plate models
were recorded on magnetic tape during tests. To extract useful information
from the tape, it is necessary to perform the following data reduction using
the system of equipment shown in Figure 58,

1. Reduce vibration data on both the beam and plate models to
power spectral density (gz/cps) of the acceleration response
versus frequency on X-Y plots. Reduce data of the strain gages
to the mean square value of strain in (microinch/inch)2/cps.

2. Reduce sinusoidal vibration data on the plate models to X-Y plots
giving continuous curves tor acceleration response versus
frequency.
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Figure 58. Data Reduction System
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COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS

For verification of the results, the experimental data obtained from
various tests in the program are compared with the analytical solutions.
Two sets of data are presented for comparison:

1. Natural frequencies and modes of free vibration

2. Acceleration response or transmissibility in forced vibration

During free vibration of the mass-loaded beam, variation of location
of the additional mass causes significant change in natural frequencies
and mode shapes. In forced vibration of both the mass-loaded beam and
plate, transmissibility characteristics are greatly affected by the type of
excitation employed, as well as by the variation of mass locations. Nota-
tions used in the diagrams of this section are the following

f = natural frequency
G = maximum acceleration response
M = mass
Subscripts:
"1" = the unloaded structure, beam or plate

"2'" = the mass-loaded beam or plate

Note that the acceleration response ratio G2/G] can be regarded also as
the transmissibility ratio T2/T] or Q2/Q) as previously discussed under

sections of Forced Vibrations of '"Mass-Loaded Beams' and '"Mass-Loaded

Plates'.
ACQUSTIC EXCITATION

Acoustic tests have been performed at various sound pressure levels
for the mass-loaded plate models under either sinusoidal or random ex-
citation. The predicted natural frequencies are agreeable with the experi-
mental values shown in Figures 59 and 60. The transmissibility follows

the predicted attenuation curve; however, some scattered data were observed

because of the existence of standing waves and the effect of reflected waves
in the acoustic reverberant chamber (Figures 61 through 77).
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Figure 59. Mass-Loaded Plates Frequency Con.parison
(Acoustic Sinusoidal Excitation)
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Figure 61. Mass-Loading Effects on Plate (Acoustic Sinusoidal Excitation),
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In Figures 61 through 69, the acceleration responses of the mass-
loaded plate under acoustic sinusoidal excitation are shown. The expres-
sion y = 0.198 + 0.802/x2 for the curve of Figure 61 also applies to the
other curves shown in Figures 62 through 69. Presented in Figures 70 through
77 are the root-mean-square acceleration responses for the cases with
random input. Note that in Figure 70 that transmissibility attenuation curve
has an expression y =0.375 + 0. 625/x% which also applies to the other curves
in Figures 71 through 77.

MECHANICAL EXCITATION

The vibration tests performed on mechanical shakers for the mass-
loaded beams and plates resulted in satisfactory data, which agrees well
with the analytical solutions.

Figures 78 through 81 show the frequency comparison of the mass-
loaded beams for the first four modes (refer to Table 2). It may be noted
that the natural frequency predictions are of good accuracy, especially for
the cases with mass-loading at the middle of the beam. The mode shapes
obtained from the computer program are presented in Appendix A. They
are identical with those measured by a proximity gage during te sting. For
the higher modes of the beam with a heavy mass attached, the modal
displacement at the mass location diminishes as the mass increases.

Figures 82 through 87 show the frequency comparison of the
mass-loaded plates. The analytical values are quite accurate, as discussed
previously under "Mass-Loaded Plates' (refer to Table 2).

The transmissibility predictions shown in Figures 88 and 89 for the
mass-loaded beams follows similar attenuation trends as expected. For
the mass-loaded plate, the transmissibility curves are discussed under
'""Mass-Loaded Plates, Transmissibility Characteristics,' and are shown
in Figures 25 and 26.

CONCENTRATED FORCE EXCITATION

Mass-loaded beam tests were performed by using a specially built
electromagnetic-induction shaker, which produces a concentrated force
excitation. The natural frequencies so obtained are identical with those
from tests with the mechanical shaker. The acceleration response differs,
however, from that of mechanical excitation (Figures 90 and 91) and varies
with the location of the shaker and the magnitude of the force input. In the
experiments, the input force was maintained at a constant level. As a result,
the input acceleration reduces as the additional mass increases according
to Newton's Law. No attempts have been made to adjust the force input
to produce a constant acceleration for all mass-loaded beam tests, since
a mechanical shaker is better qualified to do so.
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Figure 75. Mass-Loading Effects on Plate (Acoustic Random Excitation),
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Figure 81, Mass-Loaded Beam, Frequency Comparison, Mode 4 .
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RANDOM EXCITATION

Vibration tests on the mass-loaded beams and plates with random ex-
citation were performed on a mechanical shaker. For a constant white
noise input, the experimental data of power spectral density and root-
mean-square value of acceleration response follows similar trends as in
the cases with sinusoidal input (Figure 26). X-Y plots from the tests for
the input and output spectral density are shown in Appendix B for the mass-
loaded plate. Similar plots were obtained for the mass-loaded beam tests,
and have been reduced to useful data.

VARIATION OF MASS-LOADING LOCATIONS

Mass-loading effects due to variation of location of the attached mass
are described clearly in the section on '"Analytical Study.'" These effects,
obtained from experiments, are shown in Figures 78 through 81 and in
Figures 88 and 89 for the mass-loading beams. Both the natural frequencies
and acceleration responses vary with the location of mass.

BEAM-PLATE

Vibration tests were performed on the mass-loaded beam-plate model.
The resulting data are presented in Table 11.

Table 11. Mass-Loading Effects on Beam-Plate
Maximum Acceleration
Additional Natural Response (g's)
Mass Frequency
Case No. (Pounds) (cps) On Plate On Mass
0 0 - 5.5 -
1 5.07 470 6.0 4,75
2 15, 24 287 6.25 4.6
3 20,58 253 5.4 4,1

It may be noted that variation of the masses results in little change in
the acceleration responses. This effect is due to the fact that the two beams
stiffen the plate considerably, thus causing a transmissibility ratio of almost
1 to 1 for all three mass-loaded cases, The beam-plate model represents
a panel that is supported by a stiff primary structure of an aerospace vehicle
and that carries a component mass.
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APPLICATION OF THE MASS-LOADING EFFECTS

Among the major problems in vibration and acoustics associated with
aerospace vehicles are the prediction of vibration environments, computation
of the response, and the establishment of vibration criteria requirements for
equipment design and testing. Mass-loading and coupling involve the changes
in the vibratory characteristics of a structure caused by the addition of one
or more localized component masses, and, therefore, are intimately asso-
ciated with these problems. Applications of the specific results have been
mentioned in the individual sections, This section is intended to convey the
practical application for specific purposes.

Most solutions have been developed analytically and verified experi-
mentally and may be applicable to similar cases. Extension of the direct
application of the figures to other structures with different properties and
geometry should be performed with caution because the test specimens have
been limited. Application of the theories and analytical methods, however,
is not confined to the range of the representative models.

ENVIRONMENTAL PREDICTION

Much work has been performed in the measurement of the vibration
environment and in the prediction of the vibration environment extrapolated
from measured values of one vehicle to a modified or future design vehicle.
Extensive analytical and experimental investigations of dynamic response
phenomena and transmissibility characteristics, however, have been scarce.
The present sutdy results may be applied to fill this requirement for the
purpose of evaluation and refinement of these empirical predictiontechniques.

Predictions of the vibrational environment encountered by structure-
mounted equipment usually are based on statistics and assumptions that are
open to considerable question as to their applicability, While this approach
has its proper place in the earliest phase of preliminary design where the
available structural information is far from definitive, more refined methods
are needed to incorporate the design revisions or to account for the difference
resulting from application of vibration data from one vehicle to another.
Mass-loading effects represent an important input at this stage to provide a
simple technique for predicting the vibration environment.

The vibration data available are assumed to be given for an unloaded
local structure; that is, without the effect or presence of the mounted masses.
The simple prediction technique attempts to give some insight into the
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complex dynamic interaction of the mounted masses and the local structures,
specifically to what extent the mounted mass affects the vibration input at its
attach point and how the response characteristics are altered.

From Figure 92, it is clear that vibration spectra for unloaded struc-
tures are substantially changed because of the attachment of a commponent
mass introducing the frequency shifts and attenuation of responses especially
for higher modes. Information on frequency shifts may be obtained from
Figures 82 through 87 and 93 through 97. Charts presented in the sections
on '"Transmissibility'' may be used to predict the mass-loading attenuation of
responses and higher modes.

A similar problem in acoustic cases can be seen in Figure 98.
Assuming an acoustic spectrum is known from tests (wind tunnel tests, engine
firing tests, or preliminary flight tests), the sonic-induced vibration spec-
trum for mass-loaded local structures may differ greatly from the unloaded
structures. The difference may be predicted by employing information from
Figures 59 and 60 for the frequency shift case and from Figures 61 through 77
for the response attenuation case.

The response relation between the unloaded and mass loaded structures
is shown in Figure 99. The application of the mass-loading effects to
environmental specifications such as MIL-STAN-810 and MIL-E-5272C, is
illustrated in Figure 100,

Vibration Spectra

4 VIBRATION SPECTRUM AT
UNLOADED STRUCTURES

VIBRATION SPECTRUM AT
MASS-LOADED LOCAL STRUCTURE

AMPLITUDE

FREQUE NC?

Figure 92. Typical Vibration Spectra
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For general application or direct solutions without giving a known
environment for an unloaded structure, a thorough theoretical analysis using
the presented methods instead of the figures is recommended.

DESIGN CRITERIA

After the shock and vibration environment is determined, it is a critical
problem to define the design criteria and to develop an efficient method for
designing an effective support structure as well as a component which can
operate successfully under the dynamic environment. Design consideration
involves many factors and is difficult to explain briefly; however, a detailed
discussion is presented in the '"Mass Coupling'' Section, and the application
of the mass-loading results have been described in their individual sections.
Some important points that may be considered often in shock and vibration
design are to be illustrated here.

Let the vibration environment be determined as in Figure 101, which
shows an unconservative design that may result from the shift of the natural
frequency; whereas, Figure 102 demonstrates a possible overconservative
design. The difference between a design analysis accounting for the mass-
loading effect and one assuming a constant damping coefficient, C, or a
constant quality factor, Q, is shown in Figure 103. Figure 104 is a compari-
son of the mass-loading effect and the pseudo-static design concept, which
assumes an attenuation factor inversely proportional to the weight of the
mounted component,

TEST AND EVALUATION

Test and evaluation are important phases in the design, development,
and reliability studies. Their success depends on an understanding of the
mass-loading effect due to the mounted component.

The experimental phase of this report demonstrates the application of
different concepts to test and evaluation. Consideration has been given to
data analysis; design of test jigs; instrumentation; test set-ups; and methods
of excitation including edge excitation, distributed force, point force, random,
and sinusoidal. Three types of sources of excitation were used; they are
mechanical, acoustical, and electromagnetic induction forces.

Environmental prediction techniques in conjunction with statistics con-
stitute the most important factor to be considered in the definition of the
requirement for test and evaluation. Design criteria and methods of analysis
form the foundation of test-fixture design and the basis for interpretation of
experimental results. From the analytical and experimental results, a
certain type of test may be selected or substituted for test and evaluation of
some special cases.
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CONCLUSIONS AND RECOMMENDATIONS

The analytical and experimental studies of the program, which involved
testing of 58 mass-loaded and unloaded structure models, can be concluded
as follows:

1. Vibration response of mass-loaded structures differs significantly
from that of unloaded structures., The vibration environment of
components, defined as the response measured at the mounting
point, is also greatly affected because of the phenomena of fre-
quently shift and response attenuation due to the mass loading.

oy
.

Analytical methods for computing natural frequencies and modes of
the mass-loaded and unloaded structures have been developed
through several approaches. The results agree closely with
experimental data. In parallel with analytical methods, an
empirical technique using charts or diagrams has been developed
for prediction of frequency shift of the mass-loaded structures
having similar material properties and geometry at the test
specimens,

Vibration transmissibility and response characteristics of the
mass-loaded structures can be predicted by a simple relation
between the mass-loaded and unloaded structures. This relation
is in the form

Detailed information is provided in the discussions on Mass-
Loaded Beam and Mass-Loaded Plate Transmissibility
Characteristics and in the Applications of the Mass-Loading
Effects discussion,

4., Transmissibility characteristics of typical aerospace local
structures is found dependent not only on damping but also on
interaction among the component, local structure, bracketry,
and damping. In fact, an increase of damping in a mass-
coupled system may cause a higher response. This phenomenon
is analyzed in detail in the Mass-Coupling discussion.
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Experiments were accomplished through the use of a mechanical
shaker, acoustic chamber, and electromagnetic-induction shaker
representing edge excitation, uniformly distributed force, con-
centrated force, constant acceleration spectrum, constant force
spectrum, sinusoidal excitation, and random excitations. Experi-
ments were performed on 58 test models,

This program represents am exploratory investigation on mass-loading
effects on localized vibratory environments of rocket vehicles. Although all
the objectives have been successfully accomplished as planned, there remain
several areas requiring further studies; i. e.:

Mass - Loading Effects on Structures of Different Geometry and
Material Properties: For generalization of the empirical technique
for prediction of vibratory environments; more studies on this area
are needed.

Mass - Loading Effects on Shell Structures: Extend the basic

approaches and methods of mass loading effects to investigate
vibration response and transmissibility of shell structures mounted
with components such as discrete masses, ring-frames, bulkheads,
etc.

Mass - Loading Effects on Honeycomb Structures: This study would

lead to more understanding of mass-loading problems as applied
to aerospace vehicles since honeycomb construction are widely
used in aerospace structures.

Mass - Loading Effects Under Shock: Because shock loads often

produce ultimate stresses, it is important to investigate how the
mass -loading and coupling effects alter the shock environment and
response; this effort includes an investigation of the frequency
shift and mass attenuation phenomena under shock loads instead of
vibration loads.

Mass-Loading Effects Under Progressive Waves: Because of
the imperfection in generating uniform sonic pressure over the
test specimen in an acoustic reverberant chamber, it is recom-
mended that the mass-loading effects under acoustic progressive
waves be investigated to obtain more reliable data, from which
a solution of an important acoustic mass-loading problem can be
accomplished.
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APPENDIX A
MODE SHAPES OF BEAM FROM COMPUTER PROGRAM

In the following pages the first four mode shapes of the unloaded and
mass -loaded beams obtained from the computer program are presented.
Table 12 designates the weight and location for cach case.

Table 12. Mass-loadced Beam Designation

Additional W Weight
Weisht mé ~ l.ocation Mass Ratio
Case No. {(Pounds) i (Inches) (mz/ml*)
1 0.165 | 4.25 0.25
2 0.165 7.25
3 0.165 12,00
4 0.231 | 1,25 0. 35
5 0.231 T.25
6 0.231 i 12.00
7 0.330 | 4. 25 0. 30
8 0.330 i 7.25
9 0.330 12.00
10 0.495 4,25 0.75
11 0.495 7.25
12 0.495 12,00
13 0.660 4.25 1.0
14 0. 660 7.25
15 0.660 12,00
16 1.320 4.25 2.0
17 1.320 7.25
18 1.320 12,00
19 1.980 4.25 3.0
20 1.980 7.25
21 1.980 12.00
(*)my = Weight of beam = 0. 66 lb.
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DECEMBER 13, 1968 2483-01 I—
MASS LOADING EFFECTS ON BFAM VIBRATION-FIXED ENDS 00s 000

FREQUENCY ( 1) = 4,1634613E 02 kau./SEC., 6,6263544f 01 C.P.S.
STRUCTURAL MODE ( 1)
NORMALIZED TO TOTAL WEIGHT
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AN

24 22 20 18 16 14 12 10 8 [] 4 2 4]

VEHICLE STATIONS - INCHES
SLOPE = RAD./IN.

24 22 20 18 16 14 12 10 [ ) 4 2 o

T = TOTAL SLOPE 8 = BENDING SLOPE
VEMICLE STATIONS - INCHES

- 170 -
SID 66-1201




NORTH AMERICAN AVIATION, INC.

SPACE and INFORMATION SYSTEMS DIVISION

DECEMBER 13, 1965 2463-01 L_
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24¢3-01 L
DECEMBER 13, 1965 aes-0 8
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DECEMBER 13, 1965
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24¢3-03 L
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MAY 21, 1966 24¢3-01 B
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MASS LOADING EFFECTS ON BEAM VIBRATION-FIXED ENDS (CASE 2) cos  ©O00

FREQUENCY ( 1) = 3,6102700E 02 RAD./SEC., 5,7459232€ D01 C.F.S.
STRUCTURAL MODE ( 1)
NORMALIZED TO TOTAL WEIGHT
TOTAL WEIGHT = 8.2499993E-01
DEFLECTION - FT./FT,

24 -4 20 18 16 14 12 10 8 ] 4 2 -]

VEHICLE STATIONS - INCHES
SLOFE - DEG./FT.

—ssot o . - . N - . [ S S B - . .
24 124 20 18 16 14 12 10 ) (]

DS,

»
~
o

T = TOTAL SLOPE B = BENDING SLOPE
VEMICLE STATIONS - INCHES

- 178 -
SID 66-1201




. NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

MAY 21, 1966 2463-01 ®—
MASS LOADING EFFECTS ON BEAM VIBRATION-FIXED ENDS (CASE 2) 010 000

FREQUENCY ( 2) = 9.6047157€ 02 RAD./StC., 1.5286380€E 02 C.F.S.
STRUCTURAL MOCE ( 2)
NORMALIZED TO TOTAL WEIGHT
TOTAL WEIGHT = 8.2499993E~01
DEFLECTION -~ FT, /FT.

-1.0 ] ~1- 17 -1/t = - |
—} - A B
N -1 |
|
'i.’ y— ——t —1 —_ {
— |
|
-2.0 —4— Sy
24 3 20 18 16 14 12 10 [} ) ) 2 °
VEHICLE STATIONS - INCHES
SLOFE -~ DEG./FT. ‘
|
> |
0 SE=E \
f N |
1ot T |
7 T R - 7 17
+ B o s e { |
[ + L —+—f— —t— 1
I G D S O M_\\'"" S S e i .y 7 1
_ . S oy
-100 S TN - i I - - ]
[N S G o O R R ] y 4 S S
SRS’ EOUS GRS QU SN (s At A S S 0 i S S QU S SN G O R S T i SR N i G A
- z T30 12371 QS Sy e e _7(, S S D A .
-3001+—1 — -t B O PN . . \\ [ / - - 4 b=y -
[ 1T Ty A 1 - -
SS QN (  GH ) S G I G s I ]
. - iy [ N B G D R Y A4 [N G G S Sy
-400 -} 1 — - 0 I (Y G D SO0 G QD A QD N S G O O J N BN U QR SNy e S N S0 G O
24 73 20 18 16 14 12 10 [} 0 4 [ °
T = TOTAL SLOPE 8 = BENDING SLOPE

VEHICLE STATIONS - INCHES

-179 -
SID 66-1201



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION’

MAY 21, 1966 2463-03 %
MASS LOADING EFFECTS ON BEAM VIBRATION-FIXED ENDS (CASE 2) o1z 000

FREQUENCY ( 3) = 2,0924209E 03 RAD./SEC., 3,3301913 02 C.P,S.
STRUCTURAL MODE ( 3)
NORMAL 126D TO TOTAL WEIGHT
TOTAL WEIGHT = 8.2499993E-01
DEFLECTION - FT./FT,

- —1 -4+ —1-- \-JﬂA -{— -+ -1+
T TN =
N N N A /CM ]
ol //’ ]
|| _ A | 4
N pd
-
Y T G O G O O N L4
TN O O U .
12 10 ) 6 . z o
VEHICLE STATIONS - INCHES
SLOPE - DEG./FT.
s00
. L
REEE AN TR -
7
A1 BENIN NI
- ~4~«ﬁ/ \ B -
0 7 .
NG
—--* - - — ¢ - - - —t \ 4 -

1 - - —-t- t R 1
B TN R IR T S R A R R R .
-4ttt -1 - - B . -
12 10 ] L] 4 4 o
T = TOTAL SLOFE B = BENDING SLOFE
< VEHICLE STATIONS - INCHES

- 180 -
SID 66-1201




MAY 21, 1966
MASS LOADING EFFECTS ON BEAM VIBRATION-FIXED ENDS (CASE 2)

FREQUENCY ( 4) = 3.3570339E 03 RAD./SEC,, 5.3428854E 02 C.F.S.
STRUCTURAL MODE ( 4)
NORMALIZED TO TOTAL WEIGHT
TOTAL MEIGHT = 8.2499993E-01
DEFLECTION - FT./FT,

NORTH AMERICAN AVIATION, iINC. SPACE and INFORMATION SYSTEMS DIVISION

24€63-01 l—

O14 000

e
SEEEEEEEEEEEEEEEREEE } INEEE
S B S T O O O B | S S O
— ot T N 4.
‘-—NH -1 T T 1 ° / v \\\ h B
1 AT aA T ] "“\;: 1
BEEEEEN 17 HEEE N\
o \\
AN ENEERR NN N 10
N T AT T |- I AREERE ]
N T EmEEy
-1 A\ / A ya
\\ l(_ 4. 41 - { N .
NRpn% BE
o .
20 18 16 14 12 10 s e . °

VEHICLE STATIONS - INCHES
SLOFE ~ DEG./FT.

T = TOTAL SLOFE 8 = BENCING SLOFE
VEHICLE STATIONS - INCHES

- 181 -
SID 66-1201




NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION -

MAY 21, 1966 2463-01 L
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MASS LOADING EFFECTS ON BEAM VIBRATIONS - FIXED ENDS ( CASE 13 ) oss  ooo

FREQUENCY ( 3) = 1,6590769E O3 RAD./SEC., 2.6405061E 02 C.P.s.
STRUCTURAL MOOE ( 3)
NORMALIZED TO TOTAL WEIGHT
TOTAL WEIGHT = 1,3199999€ 00
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MASS LOACING EFFECTS ON BEAM VIBRATIONS - FIXED ENDS ( CASE 13 ) 083 OO0

FREQUENCY ( 4) = 2.7181244€ 03 RAD./SEC., 4.3260294E 02 C.F.S.
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MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENDS ( CASE 14 ) 0s7 000
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NORMALIZED TO TOTAL WEIGHT
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DEFLECTION - FT./FT,

l.D» r—— - - T T T —
W] HHE e U HE
SHHEH AR .
pIREHE 1 IR NARE
TN y T P
-1.0f - 1N A .{ H I
el TN IR A1 NERENN
NEHIHERN A T
® I Irhree L IS

24 2 20 18 16 14 12 10 8 6 4 2 -]

VEHICLE STATIONS - INCHES
SLOFE - DEG./FT.

300 7
i LA~ i - t
TN | BB RS

200} i ‘A i . \' 1 - } R
s 'R . B 1~ ]

Sy PLL LT IN : f . P

100 v L IR N ¢ T ING

HEEE }\ SRR A
o DI CR 1 . ! B T K M
1: by .i \ :[ i i /i: i ; s
-100| - P D N\ ' | - il T !
[ + 1 i : i/ {o H -+ ¢
b Pl N bl AR SEERE RN

-200 . : - + 4 {7 i _Iﬁ
T Pl SEREEEE RN E

soo] 1 I A EEERERYL AR Pl
. ; ' . + i} :l i : [ H
' ! . i ty { | P :

-eoof | :'l i1t A EEEE RN N
24 2z 20 18 16 14 12 10 s ¢ . z °

T = TOTAL SLOPE B = BENDING SLOFE

VERICLE STATIONS ~ INCHES

- 227 -
SID 66-1201



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

MAY 24, 1966 2463-01 .—
MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENDS ( CASE 14 ) Qs 000
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

MAY 24, 1966 2463-01 I—
MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENDS ( CASE 14 ) 091 ooo
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

MAY 24, 1966 2463-01 L
MASS LOADING EFFECTS ON BEAM VIERATION - FIXED ENDS ( CASE 15 ) 0s3  0oo
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

MAY 24, 1966 2463-01 L
MASS LOADING EFFECTS ON BEAM VIBRATION ~ FIXED ENDS ( CASE 15 ) 093 000

FREQUENCY ( 2) = 1,0023860€ 03 RAT,.'SEC., 1,5953468€E 02 C.F.S.
STRUCTURAL MOCE ( 2)
NORMALIZED TO TOTAL WEIGHT
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NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

MAY 24, 1966 2463-01 I—
MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENDS ( CASE 15 ) os7 000

FREQUENCY ( 3) = 1,7879775c U) RAD./SEC., 2.8456546E 02 C,F.S.
STRUCTURAL MODE ( 3)
NORMALIZ2ED TO TOTAL WEIGHT
TOTAL WEIGHT = 1.3199998€ 00
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MASS LOADING EFFECTS ON RFAM VIBRATION - FIXED ENDS ( CASE 15 ) 099 ©00
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SPACE and INFORMATION SYSTEMS DIVISION

NORTH AMERICAN AVIATION, INC.

2463-01 .—-
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MAY 24, 1966

ooo

{ CASE 16 )

MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED
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3.0113483€ 02 RAD./SEC.,
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2463-01 L
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{ CASE 16 )

MAY 24, 1966

MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED
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SPACE and INFORMATION SYSTEMS DIVISION

NORTH AMERICAN AVIATION, INC.

pas3-01
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( CASE 16 )

MASS LOACING EFFECTS ON BEAM VIBRATICN - FIXED

2.2887382€ 02 C,.F.s.

= 1.4380566E D RAD./acC.,
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SPACE and INFORMATION SYSTEMS DIVISION

NORTH AMERICAN AVIATION, INC.
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24€3-01 L

107

{ CASE 16 )

MAY 24, 1966

2.1291424€ 03 RAD./. <.,

MASS LOACING EFFECTS ON BEAM VIBRATION - FIXED

3.3886354€ 02 C.F.S.
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{ CASE 17 )

SID 66-1201

3.3103534€ 01 C.F.S,

SPACE and INFORMATION SYSTEMS DIVISION
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SPACE and INFORMATION SYSTEMS DIVISION

NORTH AMERICAN AVIATION, INC.

za63-01 L
111 ooo

( CASE 17 )

MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENCS

MAY 24, 1966

1.1782218€E 02 C.F.5,

= 7.4029861E 02 RAu./5C.,

FREQUENCY ( 2)

STRUCTURAL MOCE ( 2)
NORMALIZED TO TOTAL WEIGHT

TOTAL WEIGHT

1.9799999€ 00

DEFLECTION - FT, /FT,

e e . .- — PR ——— - . . . l
~ o
N P . b A ]
. . ]
_ _ [ ]
e " - e
g g
I 2. e
B ) —ﬁ. [ AU SR S
(2] [RSNSSUNSE S —
] “
5! N S AR
Sy B i \\
- Y3 /
- m \\ :
e ti\\ - .
\ - -
4 -
T I AN e
t 2

-1

-3
24
400

-200

-400
24

BENDING SLOFE

TOTAL SLOFE

T=

VEHICLE STATIONS - [NCHES

- 239 -

SID 66-1201



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

MAY 24, 1966 2463-01 .—
MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENDS ( CASE 17 ) 113 ooo
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( CASE 17 )

MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENDS
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MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENCS ( CASE 18 )
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(4)
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STRUCTURAL MCOE
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MAY 24, 1966 2ee3-0s L
MASS LOADING EFFECTS ON BEAM VIERATION - FIXED ENDS ( CASE 19 ) 127 ooo

FREQUENCY ( 2) = 6,.4780406E 02 RAC./SEC,, 1.05310122€ 02 C.F,S,
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MORMALIZED TO TOTAL WEIGHT
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MAY 24, 1966

MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENDS ( CASE 19 )
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MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENCS ( CASE 19 )
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MASS LOADING EFFECTS ON BEAM VIERATION - FIXED ENDS ( CASE 20 )
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MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENDS ( CASE 20 ) 137 oo0
FREQUENCY ( 3) = 1.2144574E O3 RAD./SEC., 1.9328683€ 02 C.F.S.
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TOTAL WEIGHT = 2.6399998¢ 0O
DEFLECTION - FT./FT,
1
' N . i | : ' N | . { : ! .
C ; RN B AR A B PilaJ it RS B
o Lot t ' Lo P i i /’N | Cy F ot H
. . T [ | i Doy vl Vo [ b R o bl
. | M | i ' i ' '
i I A Py AN IR \; I P :
o : [ : P : ‘
| . | ' . i
~ % T
2 1/ | N\ Ry <4
- .
LR l i \ | i I ' f
af o | \ ! : ‘
P ‘ R RERE RN
Loy P . . 1 ] it
i | 1 . 1
ak ARARRSRERE
, i / . .
-t t; ! IR ! !
. SR i : ‘
P i/ IR IR I I AR
' l { R © o ! :
. ! Dol { l |
| B l |
L] i1 L L
24 14 12 10 ) 6 . z o
VEHICLE STATIONS - INCHES
SLOPE - DEG./FT.
e00
' ! ] Do
Y oy '
¥ SR
ao0{ ! ‘ / ’\ N oo ! .
i 1 4 \ DU SR o
N I : HEE R ! * b
! I \ Lo H H P
eoo| !
if Q { N\ ; o oo
| ‘ i NG ]
o/ ! ‘ :
oy | tNJ ot
i t ! b I \ AT B
: i f [ HEER \ i .
-200 ! . N e
Py ! | 74 / . ; ‘,\1 .
N i ' I | | . e i .
. i H . .
-400 l * [ l :
% NS~ P SN B
v i 1 i ! ! : P
P o
-600| | t J l 1 i P i | L1
24 14 12 10 [] [ 4 o
SLOFE B = BENDING SLOFE

VEHICLE STATIONS - INCHES

SID 66-1201




ooc

2463-01 l—

139

o el e e e e T T Y Ty RO P PR e [p——
R e Hia il By TN QRS FUCINNI DU e o i T SERT TR U ISP AP

e et | ey Pt ] RE D, W [N [ (O PN . -

SID 66-1201

SPACE and INFORMATION SYSTEMS DIVISION
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MASS LOADING EFFECTS ON BEAM VIBRATION - FIXEC ENDS ( CASE 21 )

MAY 24, 1966

2,2524462€ 01 C.F.S5.

1.4152537. 02 RAC./SEC.,

FREQUENCY ( 1)

2.6399997€ 0G

DEFLECTION - FT./FT,

STRUCTURAL MODE ( 1)
NORMALIZED TO TOTAL WEIGHT

TOTAL MEIGHT

N
h,
ORI, S S
A

10

P - . -
L
-
°

10
-}

16

18

v
¥
z .
- N TE 71
B 0o
w §8 “
- 2. —H
- w —ea— P P
BE RN RN i 7
\ - K -
A D R \l.llll m o I . |v|oi|l..

18

20

-1.2

o4

100

30

oo
24

BEND ING SLOFE

VEHICLE STATIONS - INCHES

TOTAL SLOFE

T=

254 -

SID 66-1201




|

|
NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION i
i

) MAY 24, 1966 2463-01 I—
MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENDS ( CASE 21 ) 143 000
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MASS LOACING EFFECTS ON BEAM VIBRATION - FIXED ENDS ( CASE 21 )
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MASS LOADING EFFECTS ON BEAM VIBRATION - FIXED ENDS ( CASE 21 ) 147 000
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APPENDIX B

ACCELERATION SPECTRAL DENSITY OF
MASS-LOADED PLATES

The acceleration spectral density of the mass-loaded plates are pre-
sented in the following nine diagrams. The first one is the constant white -
noise input for all random vibration tests on the plate. The others are the
responses spectral density in gz/cps for various masses at the center of the
plate. For designation of each case, see '"'sampling' on the upper right cor-
ner of each diagram and refer to the following tabulation:

Additional
""Sampling'" Mass, m, Mass Ratio
(Case No.) (Pounds) (m>/my)

0
1. 80
2. 170
3.29
5.30

10. 41

15, 62

21,02
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JB-68 d ple ENGINEERING DEVELOPMENT LABORATORY
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Enclosure ( )
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